【題目】如圖所示,一動點從半徑為2O上的A0點出發(fā),沿著射線A0O方向運動到O上的點A1處,再向左沿著與射線A1O夾角為60°的方向運動到O上的點A2處;接著又從A2點出發(fā),沿著射線A2O方向運動到O上的點A3處,再向左沿著與射線A3O夾角為60°的方向運動到O上的點A4處;A4A0間的距離是_____;…按此規(guī)律運動到點A2019處,則點A2019與點A0間的距離是_____

【答案】 2

【解析】

據(jù)題意求得A0A14A0A2,A0A32,A0A4,A0A52A0A60,A0A74,于是得到A2019A3重合,即可得到結(jié)論.

解:如圖,

∵⊙O的半徑=2,

由題意得,A0A14,A0A2,A0A32,A0A4,A0A52A0A60,A0A74

2019÷6336…3,

∴按此規(guī)律A2019A3重合,

A0A2019A0A32

故答案為:,2.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】從﹣2,﹣,0,4中任取一個數(shù)記為m,再從余下的三個數(shù)中,任取一個數(shù)記為n,若kmn

1)請用列表或畫樹狀圖的方法表示取出數(shù)字的所有結(jié)果;

2)求正比例函數(shù)ykx的圖象經(jīng)過第一、三象限的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,已知點A,對點A作如下變換:

第一步:作點A關(guān)于x軸的對稱點A1;第二步:以O為位似中心,作線段OA1的位似圖形OA2,且相似比=q,則稱A2是點A的對稱位似點.

(1)A(23),q=2,直接寫出點A的對稱位似點的坐標(biāo);

(2)已知直線ly=kx-2,拋物線Cy=-x2+mx-2(m0).點N(,2k-2)在直線l上.

①當(dāng)k=時,判斷E(1,-1)是否是點N的對稱位似點,請說明理由;

②若直線l與拋物線C交于點M(x1y1)(x1≠0),且點M不是拋物線的頂點,則點M的對稱位似點是否可能仍在拋物線C上?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】12分)如圖,在直角坐標(biāo)系中,Rt△OAB的直角頂點Ax軸上,OA=4AB=3.動點M從點A出發(fā),以每秒1個單位長度的速度,沿AO向終點O移動;同時點N從點O出發(fā),以每秒125個單位長度的速度,沿OB向終點B移動.當(dāng)兩個動點運動了x秒(0x4)時,解答下列問題:

1)求點N的坐標(biāo)(用含x的代數(shù)式表示);

2)設(shè)△OMN的面積是S,求Sx之間的函數(shù)表達式;當(dāng)x為何值時,S有最大值?最大值是多少?

3)在兩個動點運動過程中,是否存在某一時刻,使△OMN是直角三角形?若存在,求出x的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,用同樣規(guī)格黑白兩色的正方形瓷磚鋪設(shè)長方形地面,請觀察下列圖形,并解答有關(guān)問題:

1)在第n個圖中,第一橫行共    塊瓷磚,第一豎列共有    塊瓷磚;(均用含n的代數(shù)式表示)鋪設(shè)地面所用瓷磚的總塊數(shù)為   (用含n的代數(shù)式表示,n表示第n個圖形)

2)上述鋪設(shè)方案,鋪一塊這樣的長方形地面共用了506塊瓷磚,求此時n的值;

3)是否存在黑瓷磚與白瓷磚塊數(shù)相等的情形?請通過計算加以說明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一次函數(shù)的圖象與反比例函數(shù)的圖象交于點,與軸交于點,若,且.

1)求反比例函數(shù)與一次函數(shù)的表達式;

2)若點x軸上一點,是等腰三角形,求點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,二次函數(shù)的圖象與x軸交于AB兩點,其中A點坐標(biāo)為,點,另拋物線經(jīng)過點,M為它的頂點.

求拋物線的解析式;

的面積

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著2019年全國兩會的隆重召開,中學(xué)生對時事新聞的關(guān)注空前高漲,某校為了解中學(xué)生對時事新聞的關(guān)注情況,組織全校九年級學(xué)生開展“時事新聞大比拼”比賽,隨機抽取九年級的25名學(xué)生的成績(滿分為100分)整理統(tǒng)計如下:收集數(shù)據(jù) 25名學(xué)生的成績(滿分為100分)統(tǒng)計如下(單位:分)

90 74 ,88 ,65 98 ,75 81 ,44 ,85 70 ,55 , 80 95 ,88 ,72 ,87 60 ,56 ,76 ,66 ,78 ,72 82 ,63 100

整理數(shù)據(jù):按如下分組整理樣本數(shù)據(jù)并補全表格:

成績(分)

90≤≤100

75≤90

60≤75

60

人數(shù)

10

8

分析數(shù)據(jù) 補充完成下面的統(tǒng)計分析表:

平均數(shù)

中位數(shù)

方差

76

190. 88

得出結(jié)論:

1)若全校九年級有1000名學(xué)生,請估計全校九年級有多少學(xué)生成績達到90分及以上;

2)若八年級的平均數(shù)為76分,中位數(shù)為80分,方差為102. 5,請你分別從平均數(shù)、中位數(shù)和方差三個方面做出評價,你認為哪個年級的成績較好?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC是等邊三角形,過AB邊上點DDGBC,交AC于點G,在GD的延長線上取點E,使ED=CG,連接AE,CD

1)求證:AE=DC

2)過EEFDC,交BC于點F,求證:∠AEF=∠ACB

查看答案和解析>>

同步練習(xí)冊答案