【題目】隨著2019年全國兩會(huì)的隆重召開,中學(xué)生對(duì)時(shí)事新聞的關(guān)注空前高漲,某校為了解中學(xué)生對(duì)時(shí)事新聞的關(guān)注情況,組織全校九年級(jí)學(xué)生開展“時(shí)事新聞大比拼”比賽,隨機(jī)抽取九年級(jí)的25名學(xué)生的成績(滿分為100分)整理統(tǒng)計(jì)如下:收集數(shù)據(jù) 25名學(xué)生的成績(滿分為100分)統(tǒng)計(jì)如下(單位:分)
90 ,74 ,88 ,65 ,98 ,75 , 81 ,44 ,85 ,70 ,55 , 80 , 95 ,88 ,72 ,87 , 60 ,56 ,76 ,66 ,78 ,72 ,82 ,63 ,100
整理數(shù)據(jù):按如下分組整理樣本數(shù)據(jù)并補(bǔ)全表格:
成績(分) | 90≤≤100 | 75≤90 | 60≤75 | <60 |
人數(shù) | 10 | 8 |
分析數(shù)據(jù) 補(bǔ)充完成下面的統(tǒng)計(jì)分析表:
平均數(shù) | 中位數(shù) | 方差 |
76 | 190. 88 |
得出結(jié)論:
(1)若全校九年級(jí)有1000名學(xué)生,請(qǐng)估計(jì)全校九年級(jí)有多少學(xué)生成績達(dá)到90分及以上;
(2)若八年級(jí)的平均數(shù)為76分,中位數(shù)為80分,方差為102. 5,請(qǐng)你分別從平均數(shù)、中位數(shù)和方差三個(gè)方面做出評(píng)價(jià),你認(rèn)為哪個(gè)年級(jí)的成績較好?
【答案】整理數(shù)據(jù):4,3;分析數(shù)據(jù):76;得出結(jié)論:(1)估計(jì)全校九年級(jí)成績達(dá)到90分及以上的人數(shù)為人;(2)評(píng)價(jià)見解析,八年級(jí)的成績比較好.
【解析】
整理數(shù)據(jù):根據(jù)有理數(shù)的大小比較法則即可得;
分析數(shù)據(jù):根據(jù)中位數(shù)的定義即可得;
得出結(jié)論:(1)先通過抽取的25名學(xué)生的成績得出成績達(dá)到90分及以上的人數(shù)的占比,再乘以1000即可得;
(2)分別根據(jù)平均數(shù)、中位數(shù)和方差的意義評(píng)價(jià)即可得.
整理數(shù)據(jù):
成績?cè)?/span>范圍的有,即人數(shù)為4人
成績?cè)?/span>范圍的有,即人數(shù)為3人
故答案為:4,3;
分析數(shù)據(jù):
由中位數(shù)的定義,將這組數(shù)據(jù)由小到大排序?yàn)?/span>
則這組數(shù)據(jù)的中位數(shù)為76
故答案為:76;
得出結(jié)論:
(1)成績達(dá)到90分及以上的人數(shù)的占比為
則估計(jì)全校九年級(jí)成績達(dá)到90分及以上的學(xué)生人數(shù)為(人);
(2)從平均數(shù)評(píng)價(jià):九年級(jí)和八年級(jí)的平均成績相同;從中位數(shù)評(píng)價(jià):八年級(jí)的中位數(shù)較大,成績優(yōu)秀的人數(shù)較多;從方差評(píng)價(jià):九年級(jí)方差大,成績不穩(wěn)定;八年級(jí)方差小,成績穩(wěn)定
故八年級(jí)的成績比較好.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:△ABC在坐標(biāo)平面內(nèi),三個(gè)頂點(diǎn)的坐標(biāo)分別為A(0,3),B(3,4),C(2,2).(正方形網(wǎng)格中,每個(gè)小正方形的邊長是1個(gè)單位長度).
(1)作出△ABC繞點(diǎn)A順時(shí)針方向旋轉(zhuǎn)90°后得到的△A1B1C1,并直接寫出C1點(diǎn)的坐標(biāo);
(2)作出△ABC關(guān)于原點(diǎn)O成中心對(duì)稱的△A2B2C2,并直接寫出B2的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,一動(dòng)點(diǎn)從半徑為2的⊙O上的A0點(diǎn)出發(fā),沿著射線A0O方向運(yùn)動(dòng)到⊙O上的點(diǎn)A1處,再向左沿著與射線A1O夾角為60°的方向運(yùn)動(dòng)到⊙O上的點(diǎn)A2處;接著又從A2點(diǎn)出發(fā),沿著射線A2O方向運(yùn)動(dòng)到⊙O上的點(diǎn)A3處,再向左沿著與射線A3O夾角為60°的方向運(yùn)動(dòng)到⊙O上的點(diǎn)A4處;A4A0間的距離是_____;…按此規(guī)律運(yùn)動(dòng)到點(diǎn)A2019處,則點(diǎn)A2019與點(diǎn)A0間的距離是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在平面直角坐標(biāo)系中,菱形 ABCD 的邊 AD∥x 軸,直線y=2x+b 與 x 軸交于點(diǎn) B,與反比例函數(shù) y=(k>0)圖象交于點(diǎn) D 和點(diǎn) E,OB=3,OA=4.
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)點(diǎn) P 為線段 BE 上的一個(gè)動(dòng)點(diǎn),過點(diǎn) P 作 x 軸的平行線,當(dāng)△CDE 被這條平行線分成面積相等的兩部分時(shí),求點(diǎn) P 的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知平行四邊形ABCD中,BDAD,延長AD至點(diǎn)E,使D是AE的中點(diǎn),連接BE和CE,BE與CD交于點(diǎn)F.
(1)求證:四邊形BDEC是矩形;
(2)若AB=6,AD=3,求矩形BDEC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,方格紙中的每個(gè)小方格都是邊長為1個(gè)單位的正方形,在建立平面直角坐標(biāo)系后,的頂點(diǎn)均在格點(diǎn)上,點(diǎn)的坐標(biāo)為.
①把向上平移5個(gè)單位后得到對(duì)應(yīng)的,畫出,并寫出的坐標(biāo);
②以原點(diǎn)為對(duì)稱中心,畫出與關(guān)于原點(diǎn)對(duì)稱的,并寫出點(diǎn)的坐標(biāo).
③以原點(diǎn)O為旋轉(zhuǎn)中心,畫出把順時(shí)針旋轉(zhuǎn)90°的圖形△A3B3C3,并寫出C3的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線y=x+1與拋物線y=x2+bx+c交于A,B(4,5)兩點(diǎn),點(diǎn)A在x軸上.
(1)求拋物線的解析式;
(2)點(diǎn)E是線段AB上一動(dòng)點(diǎn)(點(diǎn)A,B除外),過點(diǎn)E作x軸的垂線交拋物線于點(diǎn)F,當(dāng)線段EF的長度最大時(shí),求點(diǎn)E的坐標(biāo);
(3)在(2)的條件下,拋物線上是否存在一點(diǎn)P,使∠PEF=90°?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在矩形ABCD中,AB=12,P是邊AB上一點(diǎn),把△PBC沿直線PC折疊,頂點(diǎn)B的對(duì)應(yīng)點(diǎn)是點(diǎn)G,過點(diǎn)B作BE⊥CG,垂足為E且在AD上,BE交PC于點(diǎn)F.
(1)如圖1,若點(diǎn)E是AD的中點(diǎn),求證:△AEB≌△DEC;
(2)如圖2,①求證:BP=BF;
②當(dāng)AD=25,且AE<DE時(shí),求cos∠PCB的值;
③當(dāng)BP=9時(shí),求BEEF的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線()與軸交于點(diǎn),與軸交于,兩點(diǎn),其中點(diǎn)的坐標(biāo)為,拋物線的對(duì)稱軸交軸于點(diǎn),,并與拋物線的對(duì)稱軸交于點(diǎn).現(xiàn)有下列結(jié)論:①;②;③;④.其中所有正確結(jié)論的序號(hào)是______.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com