【題目】某企業(yè)擬建造如圖所示的容器(不計(jì)厚度,長(zhǎng)度單位:米),其中容器的中間為圓柱形,左右兩端均為半球形,按照設(shè)計(jì)要求容器的容積為立方米,且l≥2r.假設(shè)該容器的建造費(fèi)用僅與其表面積有關(guān),已知圓柱形部分每平方米建造費(fèi)用為3千元,半球形部分每平方米建造費(fèi)用為c(c>3)千元.設(shè)該容器的建造費(fèi)用為y千元.
①寫出y關(guān)于r的函數(shù)表達(dá)式,并求該函數(shù)的定義域;
②求該容器的建造費(fèi)用最小時(shí)的r.
【答案】①y=4π(c-2)r2+,0<r≤2②當(dāng)3<c≤時(shí),建造費(fèi)用最小時(shí)r=2;當(dāng)c>時(shí),建造費(fèi)用最小時(shí),r=.
【解析】(1)由體積V=,解得l=,
∴y=2πrl×3+4πr2×c
=6πr×+4cπr2
=2π,
又l≥2r,即≥2r,解得0<r≤2
∴其定義域?yàn)椋?/span>0,2].
(2)由(1)得,y′=8π(c﹣2)r﹣,
=,0<r≤2
由于c>3,所以c﹣2>0
當(dāng)r3﹣=0時(shí),則r=
令=m,(m>0)
所以y′=
①當(dāng)0<m<2即c>時(shí),
當(dāng)r=m時(shí),y′=0
當(dāng)r∈(0,m)時(shí),y′<0
當(dāng)r∈(m,2)時(shí),y′>0
所以r=m是函數(shù)y的極小值點(diǎn),也是最小值點(diǎn).
②當(dāng)m≥2即3<c≤時(shí),
當(dāng)r∈(0,2)時(shí),y′<0,函數(shù)單調(diào)遞減.
所以r=2是函數(shù)y的最小值點(diǎn).
綜上所述,當(dāng)3<c≤時(shí),建造費(fèi)用最小時(shí)r=2;
當(dāng)c>時(shí),建造費(fèi)用最小時(shí)r=
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知三棱臺(tái)ABC﹣A1B1C1中,平面BB1C1C⊥平面ABC,∠ACB=90°,BB1=CC1=B1C1=2,BC=4,AC=6
(1)求證:BC1⊥平面AA1C1C
(2)點(diǎn)D是B1C1的中點(diǎn),求二面角A1﹣BD﹣B1的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知:集合,其中
.,稱為的第個(gè)坐標(biāo)分量.若,且滿足如下兩條性質(zhì):
①中元素個(gè)數(shù)不少于個(gè).
②,,,存在,使得,,的第個(gè)坐標(biāo)分量都是.則稱為的一個(gè)好子集.
()若為的一個(gè)好子集,且,,寫出,.
()若為的一個(gè)好子集,求證:中元素個(gè)數(shù)不超過.
()若為的一個(gè)好子集且中恰好有個(gè)元素,求證:一定存在唯一一個(gè),使得中所有元素的第個(gè)坐標(biāo)分量都是.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠生產(chǎn)的產(chǎn)品的直徑均位于區(qū)間內(nèi)(單位: ).若生產(chǎn)一件產(chǎn)品的直徑位于區(qū)間內(nèi)該廠可獲利分別為10,30,20,10(單位:元),現(xiàn)從該廠生產(chǎn)的產(chǎn)品中隨機(jī)抽取200件測(cè)量它們的直徑,得到如圖所示的頻率分布直方圖.
(1)求的值,并估計(jì)該廠生產(chǎn)一件產(chǎn)品的平均利潤(rùn);
(2)現(xiàn)用分層抽樣法從直徑位于區(qū)間內(nèi)的產(chǎn)品中隨機(jī)抽取一個(gè)容量為5的樣本,從樣本中隨機(jī)抽取兩件產(chǎn)品進(jìn)行檢測(cè),求兩件產(chǎn)品中至多有一件產(chǎn)品的直徑位于區(qū)間內(nèi)的槪率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐P﹣ABC中,PA=PB=AB=2,BC=3,∠ABC=90°,平面PAB⊥平面ABC,D,E分別為AB,AC中點(diǎn).
(1)求證:DE∥平面PBC;
(2)求證:AB⊥PE;
(3)求三棱錐P﹣BEC的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知=(2,1),=(1,7),=(5,1),設(shè)Z是直線OP上的一動(dòng)點(diǎn).
(1)求使取最小值時(shí)的;
(2)對(duì)(1)中求出的點(diǎn)Z,求cos∠AZB的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從某校參加高二年級(jí)學(xué)業(yè)水平考試模擬考試的學(xué)生中抽取60名學(xué)生,將其數(shù)學(xué)成績(jī)分成6段[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]后,畫出如圖的頻率分布直方圖.根據(jù)圖形信息,解答下列問題:
(1)估計(jì)這次考試成績(jī)的眾數(shù),中位數(shù),平均數(shù);
(2)估計(jì)這次考試成績(jī)的及格率(60分及其以上為及格).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中國(guó)在超級(jí)計(jì)算機(jī)方面發(fā)展迅速,躋身國(guó)際先進(jìn)水平國(guó)家,預(yù)報(bào)天氣的準(zhǔn)確度也大大提高,天氣預(yù)報(bào)說今后的三天中,每一天下雨的概率都是 ,我們可以通過隨機(jī)模擬的方法估計(jì)概率.我們先產(chǎn)生組隨機(jī)數(shù)
907 966 191 925 271 932 812 458 569 683
431 257 393 027 556 488 730 113 537 989
在這組數(shù)中,用表示下雨,表示不下雨,那么今后的三天中都下雨的概率近似為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩門高射炮同時(shí)向一敵機(jī)開炮,已知甲擊中敵機(jī)的概率為0.6,乙擊中敵機(jī)的概率為0.8,敵機(jī)被擊中的概率為________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com