【題目】中國(guó)在超級(jí)計(jì)算機(jī)方面發(fā)展迅速,躋身國(guó)際先進(jìn)水平國(guó)家,預(yù)報(bào)天氣的準(zhǔn)確度也大大提高,天氣預(yù)報(bào)說(shuō)今后的三天中,每一天下雨的概率都是 ,我們可以通過(guò)隨機(jī)模擬的方法估計(jì)概率.我們先產(chǎn)生組隨機(jī)數(shù)

907 966 191 925 271 932 812 458 569 683

431 257 393 027 556 488 730 113 537 989

在這組數(shù)中,用表示下雨,表示不下雨,那么今后的三天中都下雨的概率近似為( )

A. B. C. D.

【答案】A

【解析】分析:先看組隨機(jī)數(shù)中有多少組數(shù)據(jù)的三個(gè)數(shù)是由0123組成,再利用古典概型求今后的三天中都下雨的概率.

詳解:由題得組隨機(jī)數(shù)中有1組數(shù)據(jù)的三個(gè)數(shù)是由0123組成,即113,

所以由古典概型公式得今后的三天中都下雨的概率為.故答案為:A.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,命題橢圓C1 表示的是焦點(diǎn)在軸上的橢圓,命題對(duì),直線與橢圓C2 恒有公共點(diǎn).

(1)若命題“”是假命題,命題“”是真命題,求實(shí)數(shù)的取值范圍.

(2)若假時(shí),求橢圓C1、橢圓C2的上焦點(diǎn)之間的距離d的范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某企業(yè)擬建造如圖所示的容器(不計(jì)厚度,長(zhǎng)度單位:米),其中容器的中間為圓柱形,左右兩端均為半球形,按照設(shè)計(jì)要求容器的容積為立方米,且l≥2r.假設(shè)該容器的建造費(fèi)用僅與其表面積有關(guān),已知圓柱形部分每平方米建造費(fèi)用為3千元,半球形部分每平方米建造費(fèi)用為c(c>3)千元.設(shè)該容器的建造費(fèi)用為y千元.

寫(xiě)出y關(guān)于r的函數(shù)表達(dá)式,并求該函數(shù)的定義域;

求該容器的建造費(fèi)用最小時(shí)的r.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱柱中,側(cè)棱底面, 為棱中點(diǎn). ,

I)求證: 平面

II)求證: 平面

III)在棱的上是否存在點(diǎn),使得平面平面?如果存在,求此時(shí)的值;如果不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) ,若曲線和曲線處的切線都垂直于直線

)求, 的值.

)若時(shí), ,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)求過(guò)點(diǎn),斜率是直線的斜率的的直線方程;

(2)求經(jīng)過(guò)點(diǎn),且在軸上的截距等于在軸上截距的2倍的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓與拋物線有相同的焦點(diǎn)為原點(diǎn),點(diǎn)是準(zhǔn)線上一動(dòng)點(diǎn),點(diǎn)在拋物線上,且,則的最小值為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形和四邊形所在的平面互相垂直. , ,

)求證: 平面

)求證: 平面

)在直線上是否存在點(diǎn),使得平面?并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) ,則方程 為正實(shí)數(shù))的實(shí)數(shù)根最多有_____個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案