【題目】已知函數(shù)(為自然對數(shù)的底數(shù)).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)設(shè)函數(shù),存在,,使得成立成立,求實數(shù)的取值范圍.
【答案】(1)在上單調(diào)遞增,在上單調(diào)遞減;(2)
【解析】
試題(1)確定函數(shù)的定義域,求導(dǎo)數(shù).利用導(dǎo)數(shù)的正負,可得函數(shù)的單調(diào)區(qū)間;(2)假設(shè)存在,使得成立成立,則,分類討論求最值,即可求實數(shù)的取值范圍.
試題解析:(1)∵函數(shù)的定義域為,
∴當(dāng)時,;當(dāng)時,
∴在上單調(diào)遞增,在上單調(diào)遞減.
(2)假設(shè)存在,使得成立,則.
∵
∴.
對于,當(dāng)時,, 在上單調(diào)遞減,
∴,即.
②當(dāng)時,,在上單調(diào)遞增,
∴,即.
③當(dāng)時,若,則,在上單調(diào)遞減;
若,則,在上單調(diào)遞增,
∴,即.(*)
由(1)知,在上單調(diào)遞減,
故,而
∴不等式(*)無解.
綜上所述,的取值范圍為
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠的,,三個不同車間生產(chǎn)同一產(chǎn)品的數(shù)量(單位:件)如下表所示.質(zhì)檢人員用分層抽樣的方法從這些產(chǎn)品中共抽取6件樣品進行檢測:
車間 | |||
數(shù)量 | 50 | 150 | 100 |
(1)求這6件樣品中來自,,各車間產(chǎn)品的數(shù)量;
(2)若在這6件樣品中隨機抽取2件進行進一步檢測,求這2件產(chǎn)品來自相同車間的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點P在曲線x2+y2=1上運動,過點P作x軸的垂線,垂足為Q,動點M滿足.
(1)求動點M的軌跡方程;
(2)點AB在直線x﹣y﹣4=0上,且AB=4,求△MAB的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè),。
(1)求的單調(diào)區(qū)間;
(2)討論零點的個數(shù);
(3)當(dāng)時,設(shè)恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓C:(a>b>0)的右焦點為F,橢圓C上的兩點A,B關(guān)于原點對稱,且滿足,|FB|≤|FA|≤2|FB|,則橢圓C的離心率的取值范圍是( )
A.B.
C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】己知直線2x﹣y﹣1=0與直線x﹣2y+1=0交于點P.
(Ⅰ)求過點P且平行于直線3x+4y﹣15=0的直線的方程;(結(jié)果寫成直線方程的一般式)
(Ⅱ)求過點P并且在兩坐標軸上截距相等的直線方程(結(jié)果寫成直線方程的一般式)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com