【題目】已知點P在曲線x2+y2=1上運動,過點P作x軸的垂線,垂足為Q,動點M滿足.
(1)求動點M的軌跡方程;
(2)點AB在直線x﹣y﹣4=0上,且AB=4,求△MAB的面積的最大值.
【答案】(1)x2+=1(2)
【解析】
(1)設(shè),再由已知將用表示,代入曲線方程,即可求解;
(2)要求△MAB的面積的最大值,只需求點到直線距離的最大值,當點為與直線平行且距離較遠的切線的切點時,為所求的點,轉(zhuǎn)化為求與直線平行的切線方程,即可得出結(jié)論.
(1)設(shè),
∵動點M滿足.∴,
∴,解得:,
代入曲線,可得:.
∴動點M的軌跡方程為: .
(2)設(shè)與直線x﹣y﹣4=0平行且與橢圓相切的直線方程為:x﹣y+m=0,
聯(lián)立,化為:9x2+2mx+m2﹣8=0,
令,解得.取.
可得切線:x﹣y+3=0與直線x﹣y﹣4=0的距離
d=.
∴△MAB的面積的最大值為.
科目:高中數(shù)學 來源: 題型:
【題目】在棱長為1的正方體中,點是對角線上的動點(點與不重合),則下列結(jié)論正確的是__________.
①存在點,使得平面平面;
②存在點,使得平面平面;
③若分別是在平面與平面的正投影的面積,則存在點,使得;
④的面積可能等于.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】十二生肖的座位次序如下圖1,中間的狗、豬位置固定不動,其他生肖動物每次順時針轉(zhuǎn)動一格,即第一次轉(zhuǎn)動后的座位次序如下圖2,這樣繼續(xù)進行下去,那么第2019次換座位后,鼠的座位對應的編號為________.
圖一:
鼠1 | 牛2 | 虎3 | 兔4 |
雞10 | 狗11 | 豬12 | 龍5 |
猴9 | 羊8 | 馬7 | 蛇6 |
圖二:
雞1 | 鼠2 | 牛3 | 虎4 |
猴10 | 狗11 | 豬12 | 兔5 |
羊9 | 馬8 | 蛇7 | 龍6 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,在長方體ABCD﹣A1B1C1D1,若AB=BC,E,F分別是AB1,BC1的中點,則下列結(jié)論中不成立的是( )
A.EF與BB1垂直B.EF⊥平面BDD1B1
C.EF與C1D所成的角為45°D.EF∥平面A1B1C1D1
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在棱長為2的正方體中,點P在正方體的對角線AB上,點Q在正方體的棱CD上,若P為動點,Q為動點,則PQ的最小值為_____.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,近日我漁船編隊在島周圍海域作業(yè),在島的南偏西20°方向有一個海面觀測站,某時刻觀測站發(fā)現(xiàn)有不明船只向我漁船編隊靠近,現(xiàn)測得與相距31海里的處有一艘海警船巡航,上級指示海警船沿北偏西40°方向,以40海里/小時的速度向島直線航行以保護我漁船編隊,30分鐘后到達處,此時觀測站測得間的距離為21海里.
(Ⅰ)求的值;
(Ⅱ)試問海警船再向前航行多少分鐘方可到島?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓:的左、右焦點分別為,,過且垂直于軸的焦點弦的弦長為,過的直線交橢圓于,兩點,且的周長為.
(1)求橢圓的方程;
(2)已知直線,互相垂直,直線過且與橢圓交于點,兩點,直線過且與橢圓交于,兩點.求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)(為自然對數(shù)的底數(shù)).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)設(shè)函數(shù),存在,,使得成立成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,以棱長為1的正方體的三條棱所在直線為坐標軸,建立空間直角坐標系,點在線段上,點在線段上.
(1)當,且點關(guān)于軸的對稱點為點時,求的長度;
(2)當點是面對角線的中點,點在面對角線上運動時,探究的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com