【題目】某工廠的,,三個(gè)不同車(chē)間生產(chǎn)同一產(chǎn)品的數(shù)量(單位:件)如下表所示.質(zhì)檢人員用分層抽樣的方法從這些產(chǎn)品中共抽取6件樣品進(jìn)行檢測(cè):
車(chē)間 | |||
數(shù)量 | 50 | 150 | 100 |
(1)求這6件樣品中來(lái)自,,各車(chē)間產(chǎn)品的數(shù)量;
(2)若在這6件樣品中隨機(jī)抽取2件進(jìn)行進(jìn)一步檢測(cè),求這2件產(chǎn)品來(lái)自相同車(chē)間的概率.
【答案】(1)1,2,3;(2).
【解析】
(1)先求得分層抽樣的抽樣比,由此求得這6件樣品中來(lái)自,,各車(chē)間產(chǎn)品的數(shù)量.
(2)利用列舉法,結(jié)合古典概型概率計(jì)算公式,計(jì)算出所求概率.
(1)因?yàn)闃颖救萘颗c總體中的個(gè)體數(shù)的比是,
所以車(chē)間產(chǎn)品被選取的件數(shù)為,
車(chē)間產(chǎn)品被選取的件數(shù)為,
車(chē)間產(chǎn)品被選取的件數(shù)為.
(2)設(shè)6件自三個(gè)車(chē)間的樣品分別為:;,,;,.
則從6件樣品中抽取的這2件產(chǎn)品構(gòu)成的所有基本事件為:
,,,,,,,,
,,,,,,,共15個(gè).
每個(gè)樣品被抽到的機(jī)會(huì)均等,因此這些基本事件的出現(xiàn)是等可能的.
記事件:“抽取的這2件產(chǎn)品來(lái)自相同車(chē)間”,
則事件包含的基本事件有:
,,,,共4個(gè)
所以.
所以這2件商品來(lái)自相同車(chē)間的概率為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】四邊形ABCD為矩形,AD⊥平面ABE,AE=EB=BC,F為CE上的點(diǎn),且BF⊥平面ACE.
(1)求證:AE⊥BE;
(2)設(shè)M在線(xiàn)段AB上,且滿(mǎn)足AM=2MB,試在線(xiàn)段CE上確定一點(diǎn)N,使得MN∥平面DAE.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),若關(guān)于的方程恰有三個(gè)不相等的實(shí)數(shù)解,則的取值范圍是
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】魏晉時(shí)期數(shù)學(xué)家劉徽在為《九章算術(shù)》作注時(shí),提出利用“牟合方蓋”解決球體體積,“牟合方蓋”由完全相同的四個(gè)曲面構(gòu)成,相對(duì)的兩個(gè)曲面在同一圓柱的側(cè)面上,正視圖和側(cè)視圖都是圓,每一個(gè)水平截面都是正方形,好似兩個(gè)扣合(牟合)在一起的方形傘(方蓋).二百多年后,南北朝時(shí)期數(shù)學(xué)家祖暅在前人研究的基礎(chǔ)上提出了《祖暅原理》:“冪勢(shì)既同,則積不容異”.意思是:兩等高立方體,若在每一等高處的截面積都相等,則兩立方體體積相等.如圖有一牟合方蓋,其正視圖與側(cè)視圖都是半徑為的圓,正邊形是為體現(xiàn)其直觀性所作的輔助線(xiàn),根據(jù)祖暅原理,該牟合方蓋體積為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,是半圓的直徑,平面與半圓所在的平面垂直,,, ,是半圓上不同于,的點(diǎn),四邊形是矩形.
(Ⅰ)若,證明:平面;
(Ⅱ)若,求三棱錐體積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓C過(guò)點(diǎn),且與圓外切于點(diǎn),過(guò)點(diǎn)作圓C的兩條切線(xiàn)PM,PN,切點(diǎn)為M,N.
(1)求圓C的標(biāo)準(zhǔn)方程;
(2)試問(wèn)直線(xiàn)MN是否恒過(guò)定點(diǎn)?若過(guò)定點(diǎn),請(qǐng)求出定點(diǎn)坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】α,β是兩個(gè)不重合的平面,在下列條件中,可判斷平面α,β平行的是( )
A. m,n是平面內(nèi)兩條直線(xiàn),且,
B. 內(nèi)不共線(xiàn)的三點(diǎn)到的距離相等
C. ,都垂直于平面
D. m,n是兩條異面直線(xiàn),,,且,
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知, , , .給出以下三個(gè)命題:
①分別過(guò)點(diǎn), ,作的不同于軸的切線(xiàn),兩切線(xiàn)相交于點(diǎn),則點(diǎn)的軌跡為橢圓的一部分;
②若, 相切于點(diǎn),則點(diǎn)的軌跡恒在定圓上;
③若, 相離,且,則與, 都外切的圓的圓心在定橢圓上.
則以上命題正確的是( )
A. ①② B. ①③ C. ②③ D. ①②③
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四面體ABCD中,△ABC是等邊三角形,平面ABC⊥平面ABD,點(diǎn)M為棱AB的中點(diǎn),AB=2,AD=,∠BAD=90°.
(Ⅰ)求證:AD⊥BC;
(Ⅱ)求異面直線(xiàn)BC與MD所成角的余弦值;
(Ⅲ)求直線(xiàn)CD與平面ABD所成角的正弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com