【題目】某幾何體的三視圖如圖所示,則該幾何體的外接球的表面積為(

A. 136π B. 144π C. 36π D. 34π

【答案】D

【解析】分析:作出幾何體的直觀圖,建立空間直角坐標(biāo)系,求出外接球的球心,從而可的外接球的半徑,再計(jì)算出外接球的面積.

詳解:由三視圖可知幾何體為四棱錐E﹣ABCD,直觀圖如圖所示:

其中,BE⊥平面ABCD,BE=4,ABAD,AB=

CAB的距離為2,CAD的距離為2,

A為原點(diǎn),以AB,AD,及平面ABCD過(guò)A的垂線為坐標(biāo)軸建立空間直角坐標(biāo)系A﹣xyz,

A(0,0,0),B(0,,0),C(2,2,0),D(4,0,0),E(0,,4).

設(shè)外接球的球心為M(x,y,z),則MA=MB=MC=MD=ME,

x2+y2+z2=x2+(y﹣2+z2=(x﹣2)2+(y﹣22+z2=(x﹣4)2+y2+z2=x2+(y﹣2+(z﹣4)2,

解得x=2,y=,z=2.

∴外接球的半徑r=MA==,

∴外接球的表面積S=4πr2=34π.

故選:D.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某同學(xué)在研究函數(shù)fx)=xR時(shí),分別給出下面幾個(gè)結(jié)論:

①等式f(-x)=-fx)在xR時(shí)恒成立;

②函數(shù)fx)的值域?yàn)椋?/span>-1,1);

③若x1x2,則一定有fx1)≠fx2);

④方程fx)=xR上有三個(gè)根.

其中正確結(jié)論的序號(hào)有______.(請(qǐng)將你認(rèn)為正確的結(jié)論的序號(hào)都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某鎮(zhèn)在政府精準(zhǔn)扶貧的政策指引下,充分利用自身資源,大力發(fā)展養(yǎng)殖業(yè),以增加收入,政府計(jì)劃共投入72萬(wàn)元,全部用于甲、乙兩個(gè)合作社,每個(gè)合作社至少要投入15萬(wàn)元,其中甲合作社養(yǎng)魚(yú),乙合作社養(yǎng)雞,在對(duì)市場(chǎng)進(jìn)行調(diào)研分析發(fā)現(xiàn)養(yǎng)魚(yú)的收益M、養(yǎng)雞的收益N與投入a(單位:萬(wàn)元)滿足.設(shè)甲合作社的投入為x(單位:萬(wàn)元),兩個(gè)合作社的總收益為fx)(單位:萬(wàn)元).

1)當(dāng)甲合作社的投入為25萬(wàn)元時(shí),求兩個(gè)合作社的總收益;

2)試問(wèn)如何安排甲、乙兩個(gè)合作社的投入,才能使總收益最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校高一、高二、高三的三個(gè)年級(jí)學(xué)生人數(shù)如下表


高三

高二

高一

女生

100

150

z

男生

300

450

600

按年級(jí)分層抽樣的方法評(píng)選優(yōu)秀學(xué)生50人,其中高三有10人.

1)求z的值;

2)用分層抽樣的方法在高一中抽取一個(gè)容量為5的樣本,將該樣本看成一個(gè)總體,從中任取2人,求至少有1名女生的概率;

3)用隨機(jī)抽樣的方法從高二女生中抽取8,經(jīng)檢測(cè)她們的得分如下:94,86,92 96,87,9390,82,把這8人的得分看作一個(gè)總體,從中任取一個(gè)數(shù),求該數(shù)與樣本平均數(shù)之差的絕對(duì)值不超過(guò)05的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某同學(xué)家門(mén)前有一筆直公路直通長(zhǎng)城,星期天,他騎自行車(chē)勻速前往旅游,他先前進(jìn)了,覺(jué)得有點(diǎn)累,就休息了一段時(shí)間,想想路途遙遠(yuǎn),有些泄氣,就沿原路返回騎了, 當(dāng)他記起詩(shī)句“不到長(zhǎng)城非好漢”,便調(diào)轉(zhuǎn)車(chē)頭繼續(xù)前進(jìn). 則該同學(xué)離起點(diǎn)的距離與時(shí)間的函數(shù)關(guān)系的圖象大致為( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,是邊長(zhǎng)為的棱形,且分別是的中點(diǎn).

(1)證明:平面;

(2)若二面角的大小為,求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知冪函數(shù)m,,m,n互質(zhì)),下列關(guān)于的結(jié)論正確的是(

A.mn是奇數(shù)時(shí),冪函數(shù)是奇函數(shù)

B.m是偶數(shù),n是奇數(shù)時(shí),冪函數(shù)是偶函數(shù)

C.m是奇數(shù),n是偶數(shù)時(shí),冪函數(shù)是偶函數(shù)

D.時(shí),冪函數(shù)上是減函數(shù)

E.mn是奇數(shù)時(shí),冪函數(shù)的定義域?yàn)?/span>

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法正確的是(

A.函數(shù)值域中的每一個(gè)數(shù)在定義域中一定只有一個(gè)數(shù)與之對(duì)應(yīng)

B.函數(shù)的定義域和值域可以是空集

C.函數(shù)的定義域和值域一定是數(shù)集

D.函數(shù)的定義域和值域確定后,函數(shù)的對(duì)應(yīng)關(guān)系也就確定了

E.函數(shù)的定義域和對(duì)應(yīng)關(guān)系確定后,函數(shù)的值域也就確定了

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)).在以原點(diǎn)為極點(diǎn),軸正半軸為極軸的極坐標(biāo)系中,曲線的極坐標(biāo)方程為.

(1)求直線的極坐標(biāo)方程和曲線的直角坐標(biāo)方程;

(2)若直線與曲線交于兩點(diǎn),求.

查看答案和解析>>

同步練習(xí)冊(cè)答案