【題目】如圖,直三棱柱的底面是等腰直角三角形,,側(cè)棱底面,且,的中點

(1)求直三棱柱的全面積;

(2)求異面直線所成角的大。ńY(jié)果用反三角函數(shù)表示);

【答案】(1),(2).

【解析】

試題(1)直三棱柱的全面積為兩個底面三角形面積與側(cè)面積之和. 底面是等腰直角三角形,其面積為,側(cè)面展開圖為矩形,其面積為(2)求異面直線所成角,關(guān)鍵在于利用平行,將所求角轉(zhuǎn)化為某一三角形中的內(nèi)角.因為條件有中點,所以從中位線上找平行. 取的中點,連,則,即即為異面直線所成的角.分別求出三角形三邊,再利用余弦定理求角. ,,,.

解:(1) (2分)

(4分)

(6分)

(2)取的中點,連,則,即即為異面直線所成的角 (2分)

.

中,由,

中,由, (4分)

中,

(6分)

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線和動直線.直線交拋物線兩點,拋物線處的切線的交點為.

1)當時,求以為直徑的圓的方程;

2)求面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在長方體中,,,分別是棱的中點,是底面內(nèi)一動點,若直線與平面平行,則三角形面積最小值為( )

A.B.1C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的右焦點為,過軸的垂線交橢圓于點(點軸上方),斜率為的直線交橢圓兩點,過點作直線交橢圓于點,且,直線軸于點.

(1)設橢圓的離心率為,當點為橢圓的右頂點時,的坐標為,求的值.

(2)若橢圓的方程為,且,是否存在使得成立?如果存在,求出的值;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設數(shù)列的各項都是正數(shù),若對于任意的正整數(shù),存在,使得、成等比數(shù)列,則稱函數(shù)為“型”數(shù)列.

(1)若是“型”數(shù)列,且,,求的值;

(2)若是“型”數(shù)列,且,求的前項和

(3)若既是“型”數(shù)列,又是“型”數(shù)列,求證:數(shù)列是等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某工廠因排污比較嚴重,決定著手整治,一個月時污染度為,整治后前四個月的污染度如下表:

月數(shù)

污染度

污染度為后,該工廠即停止整治,污染度又開始上升,現(xiàn)用下列三個函數(shù)模擬從整治后第一個月開始工廠的污染模式:,,,其中表示月數(shù),、、分別表示污染度.

1)問選用哪個函數(shù)模擬比較合理,并說明理由;

2)若以比較合理的模擬函數(shù)預測,整治后有多少個月的污染度不超過

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=(2x-4)exa(x+2)2(x>0,aR,e是自然對數(shù)的底數(shù)).

(1)f(x)(0,+∞)上的單調(diào)遞增函數(shù),求實數(shù)a的取值范圍;

(2)a時,證明:函數(shù)f(x)有最小值,并求函數(shù)f(x)的最小值的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐P-ABCD中,AD∥BC,ADC=PAB=90°,BC=CD=AD.E為棱AD的中點,異面直線PA與CD所成的角為90°.

(I)在平面PAB內(nèi)找一點M,使得直線CM∥平面PBE,并說明理由;

(II)若二面角P-CD-A的大小為45°,求直線PA與平面PCE所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知多面體,,均垂直于平面,,,,

(1)證明:⊥平面;

(2)求直線與平面所成的角的正弦值.

查看答案和解析>>

同步練習冊答案