【題目】在長(zhǎng)方體中,,,分別是棱的中點(diǎn),是底面內(nèi)一動(dòng)點(diǎn),若直線與平面平行,則三角形面積最小值為( )

A.B.1C.D.

【答案】C

【解析】

由直線與平面沒有公共點(diǎn)可知線面平行,補(bǔ)全所給截面后,易得兩個(gè)平行截面,從而確定點(diǎn)P所在的線段,計(jì)算即可.

分別取的中點(diǎn)H,Q,R,補(bǔ)全截面EFG為截面EFGHQR如圖所示,

設(shè)BR⊥AC,∵直線D1P與平面EFG不存在公共點(diǎn),∴D1P∥平面EFGHQR,易知平面ACD1∥平面EFGHQR,∴P∈AC,

且當(dāng)P與R重合時(shí),BP=BR最短,此時(shí)△PBB1的面積最小,,

由等面積法:BR×AC=BA×BC,得

,又BB1⊥平面ABCD,∴BB1⊥BP,△PBB1為直角三角形,

∴△PBB1的面積為:.

故選:C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】自由購(gòu)是通過自助結(jié)算方式購(gòu)物的一種形式.某大型超市為調(diào)查顧客使用自由購(gòu)的情況隨機(jī)抽取了100人,統(tǒng)計(jì)結(jié)果整理如下

20以下

[20,30)

[30,40)

[40,50)

[50,60)

[60,70]

70以上

使用人數(shù)

3

12

17

6

4

2

0

未使用人數(shù)

0

0

3

14

36

3

0

(Ⅰ)現(xiàn)隨機(jī)抽取1名顧客,試估計(jì)該顧客年齡在且未使用自由購(gòu)的概率;

(Ⅱ)從被抽取的年齡在使用自由購(gòu)的顧客中,隨機(jī)抽取3人進(jìn)一步了解情況表示這3人中年齡在的人數(shù),求隨機(jī)變量的分布列及數(shù)學(xué)期望

(Ⅲ)為鼓勵(lì)顧客使用自由購(gòu),該超市擬對(duì)使用自由購(gòu)的顧客贈(zèng)送1個(gè)環(huán)保購(gòu)物袋.若某日該超市預(yù)計(jì)有5000人購(gòu)物,試估計(jì)該超市當(dāng)天至少應(yīng)準(zhǔn)備多少個(gè)環(huán)保購(gòu)物袋.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面,底面是直角梯形,,.

(1)證明:當(dāng)點(diǎn)上運(yùn)動(dòng)時(shí),始終有平面平面;

(2)求銳二而角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙、丙三人參加微信群搶紅包游戲,規(guī)則如下:每輪游戲發(fā)個(gè)紅包,每個(gè)紅包金額為元,已知在每輪游戲中所產(chǎn)生的個(gè)紅包金額的頻率分布直方圖如圖所示

1的值,并根據(jù)頻率分布直方圖,估計(jì)紅包金額的眾數(shù);

2以頻率分布直方圖中的頻率作為概率,若甲、乙、丙三人從中各搶到一個(gè)紅包,其中金額在的紅包個(gè)數(shù)為,求的分布列和期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為⊙O的直徑,點(diǎn)CO上,且AOC120°,PA⊥平面ABCAB=4,PA=2,DPC的中點(diǎn),點(diǎn)MO上的動(dòng)點(diǎn)(不與AC重合).

(1)證明:ADPB;

(2)當(dāng)三棱錐DACM體積最大時(shí),求面MAD與面MCD所成二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《最強(qiáng)大腦》是大型科學(xué)競(jìng)技類真人秀節(jié)目,是專注傳播腦科學(xué)知識(shí)和腦力競(jìng)技的節(jié)目.某機(jī)構(gòu)為了了解大學(xué)生喜歡《最強(qiáng)大腦》是否與性別有關(guān),對(duì)某校的100名大學(xué)生進(jìn)行了問卷調(diào)查,得到如下列聯(lián)表:

喜歡《最強(qiáng)大腦》

不喜歡《最強(qiáng)大腦》

合計(jì)

男生

15

女生

15

合計(jì)

已知在這100人中隨機(jī)抽取1人抽到不喜歡《最強(qiáng)大腦》的大學(xué)生的概率為0.4

(I)請(qǐng)將上述列聯(lián)表補(bǔ)充完整;判斷是否有99.9%的把握認(rèn)為喜歡《最強(qiáng)大腦》與性別有關(guān),并說明理由;

(II)已知在被調(diào)查的大學(xué)生中有5名是大一學(xué)生,其中3名喜歡《最強(qiáng)大腦》,現(xiàn)從這5名大一學(xué)生中隨機(jī)抽取2人,抽到喜歡《最強(qiáng)大腦》的人數(shù)為X,求X的分布列及數(shù)學(xué)期望.

參考公式:,

參考數(shù)據(jù):,,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】己知函數(shù),它的導(dǎo)函數(shù)為.

(1)當(dāng)時(shí),求的零點(diǎn);

(2)若函數(shù)存在極小值點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,直三棱柱的底面是等腰直角三角形,,側(cè)棱底面,且的中點(diǎn)

(1)求直三棱柱的全面積;

(2)求異面直線所成角的大小(結(jié)果用反三角函數(shù)表示);

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)數(shù)列的項(xiàng)數(shù)均為,則將兩個(gè)數(shù)列的偏差距離定義為,其中.

1)求數(shù)列1,2,7,8和數(shù)列23,5,6的偏差距離;

2)設(shè)為滿足遞推關(guān)系的所有數(shù)列的集合,中的兩個(gè)元素,且項(xiàng)數(shù)均為,若,的偏差距離小于2020,求最大值;

3)記是所有7項(xiàng)數(shù)列的集合,,且中任何兩個(gè)元素的偏差距離大于或等于3,證明:中的元素個(gè)數(shù)小于或等于16.

查看答案和解析>>

同步練習(xí)冊(cè)答案