函數(shù)的部分圖象如下圖所示,將的圖象向右平移個單位后得到函數(shù)的圖象.

(1)求函數(shù)的解析式;
(2)若的三邊為成單調(diào)遞增等差數(shù)列,且,求的值.

(1);(2).

解析試題分析:(1)對稱中心到相鄰對稱軸的距離等于四分之和個周期,所以,由此可得.再將點代入便可求得,這樣便得的解析式.再將中的換成便得的解析式.
(2)由(1)得.由可求出.
成等差,所以…………①
如何利用等式①求的值?
注意,所以可令……②
①②兩式平方相加即可.
試題解析:(1)由圖知:,∵,
,即, 由于,所以,函數(shù)的解析式為.
(2),且,所以,.
成等差,所以,………………………………①
,………………………………………………………②
兩式平方相加得:
整理化簡得:.由于,所以.
考點:1、三角函數(shù)的圖象及其變換;2、正弦定理及三角恒等變換.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知角的頂點在原點,始邊與軸的正半軸重合,終邊經(jīng)過點.
(Ⅰ)求的值;
(Ⅱ)若函數(shù),求函數(shù)在區(qū)間上的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知向量,,
(1)若,求向量的夾角;
(2)當(dāng)時,求函數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù),且的圖象的一個對稱中心到最近的對稱軸的距離為,
(Ⅰ)求的值
(Ⅱ)求在區(qū)間上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù) ().
(1)求函數(shù)的最小正周期;
(2)求函數(shù)在區(qū)間上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在△ABC中,角A、B、C所對的邊分別為a、b、c,q=(,1),p=(,)且
(1)求的值;
(2)求三角函數(shù)式的取值范圍?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知向量,,函數(shù)的圖象與直線的相鄰兩個交點之間的距離為
(Ⅰ)求的值;
(Ⅱ)求函數(shù)上的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù)
(1) 求的最小正周期及其圖像的對稱軸方程;
(2) 將函數(shù)的圖像向右平移個單位長度,得到函數(shù)的圖像,求在區(qū)間的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(Ⅰ)求函數(shù)的最小正周期;
(Ⅱ)確定函數(shù)上的單調(diào)性并求在此區(qū)間上的最小值.

查看答案和解析>>

同步練習(xí)冊答案