已知向量,,
(1)若,求向量、的夾角;
(2)當(dāng)時(shí),求函數(shù)的最大值.
(1)向量與的夾角為;(2)函數(shù)在區(qū)間的最大值為.
解析試題分析:(1)將代入向量的坐標(biāo),再利用向量的數(shù)量積計(jì)算)向量與的夾角;(2)先根據(jù)向量的數(shù)量積求出函數(shù)的解析式,并化簡(jiǎn)為,計(jì)算在區(qū)間的取值范圍,然后結(jié)合正弦曲線確定函數(shù)的最大值.
試題解析:(1)當(dāng)時(shí),,,
,所以、的夾角為;
(2)
,
,,,
當(dāng),即.時(shí),.
考點(diǎn):1.平面向量的數(shù)量積;2.二倍角公式;3.輔助角公式;4.三角函數(shù)的最值
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),.求:
(1)函數(shù)的最小值及取得最小值的自變量的集合;
(2)函數(shù)的單調(diào)增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),其圖象上相鄰兩條對(duì)稱軸之間的距離為,且過點(diǎn).
(Ⅰ)求和的值;
(Ⅱ)求函數(shù)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
函數(shù)的部分圖象如下圖所示,將的圖象向右平移個(gè)單位后得到函數(shù)的圖象.
(1)求函數(shù)的解析式;
(2)若的三邊為成單調(diào)遞增等差數(shù)列,且,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(1)求的單調(diào)遞增區(qū)間;
(2)在中,內(nèi)角A,B,C的對(duì)邊分別為,已知,成等差數(shù)列,且,求邊的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com