【題目】已知函數(shù),.
(1)設(shè)函數(shù),討論的極值點(diǎn)個(gè)數(shù),并求出相應(yīng)極值;
(2)若,且,求證:.
【答案】(1)極值點(diǎn)個(gè)數(shù)見解析,相應(yīng)極值見解析;(2)證明見解析
【解析】
(1)求出的導(dǎo)函數(shù),對(duì)a進(jìn)行分類討論求解討論極值點(diǎn);
(2)根據(jù)導(dǎo)函數(shù)得,結(jié)合在上單調(diào)遞增,即可得證.
(1)函數(shù)
,
∴
,
令,解得或,
當(dāng)時(shí),;當(dāng)時(shí),.
①若時(shí),在上單調(diào)遞增,在上單調(diào)遞減,
在上單調(diào)遞增,有2個(gè)極值點(diǎn).
∴當(dāng)時(shí),函數(shù)有極小值,極小值為;
當(dāng)時(shí),函數(shù)有極大值,極大值為.
②當(dāng)時(shí),在上單調(diào)遞增,
在上單調(diào)遞減,在上單調(diào)遞增,有2個(gè)極值點(diǎn),
∴當(dāng)時(shí),函數(shù)有極大值,極大值為;
當(dāng)時(shí),函數(shù)有極小值,極小值為.
③當(dāng)時(shí),,
∴在R上單調(diào)遞增,無(wú)極值點(diǎn),故無(wú)極值.
(2)∵,
又,
∴,
又在上單調(diào)遞增,
∴時(shí),有,
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)).以原點(diǎn)為極點(diǎn),以軸為非負(fù)半軸為極軸建立極坐標(biāo)系,兩坐標(biāo)系相同的長(zhǎng)度單位.圓的方程為被圓截得的弦長(zhǎng)為.
(Ⅰ)求實(shí)數(shù)的值;
(Ⅱ)設(shè)圓與直線交于點(diǎn),若點(diǎn)的坐標(biāo)為,且,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩人在相同條件下各射擊次,每次中靶環(huán)數(shù)情況如圖所示:
(1)請(qǐng)?zhí)顚懴卤恚ㄏ葘懗鲇?jì)算過程再填表):
平均數(shù) | 方差 | 命中環(huán)及環(huán)以上的次數(shù) | |
甲 | |||
乙 |
(2)從下列三個(gè)不同的角度對(duì)這次測(cè)試結(jié)果進(jìn)行
①?gòu)钠骄鶖?shù)和方差相結(jié)合看(分析誰(shuí)的成績(jī)更穩(wěn)定);
②從平均數(shù)和命中環(huán)及環(huán)以上的次數(shù)相結(jié)合看(分析誰(shuí)的成績(jī)好些);
③從折線圖上兩人射擊命中環(huán)數(shù)的走勢(shì)看(分析誰(shuí)更有潛力).
參考公式:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給出下列五個(gè)命題:
①已知直線、和平面,若,,則;
②平面上到一個(gè)定點(diǎn)和一條定直線的距離相等的點(diǎn)的軌跡是一條拋物線;
③雙曲線,則直線與雙曲線有且只有一個(gè)公共點(diǎn);
④若兩個(gè)平面垂直,那么一個(gè)平面內(nèi)與它們的交線不垂直的直線與另一個(gè)平面也不垂直;
⑤過的直線與橢圓交于、兩點(diǎn),線段中點(diǎn)為,設(shè)直線斜率為,直線的斜率為,則等于.
其中,正確命題的序號(hào)為_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的左右頂點(diǎn)為,為橢圓上異于的動(dòng)點(diǎn),設(shè)直線的斜率分別為,且.
(1)求橢圓的離心率;
(2)當(dāng)橢圓內(nèi)切于圓時(shí),設(shè)動(dòng)直線與橢圓相交于兩點(diǎn),為坐標(biāo)原點(diǎn),若,問:的面積是否存在最小值?若存在,求出這個(gè)最小值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了研究某學(xué)科成績(jī)是否與學(xué)生性別有關(guān),采用分層抽樣的方法,從高三年級(jí)抽取了30名男生和20名女生的該學(xué)科成績(jī),得到如下所示男生成績(jī)的頻率分布直方圖和女生成績(jī)的莖葉圖,規(guī)定80分以上為優(yōu)分(含80分).
(Ⅰ)(i)請(qǐng)根據(jù)圖示,將2×2列聯(lián)表補(bǔ)充完整;
優(yōu)分 | 非優(yōu)分 | 總計(jì) | |
男生 | |||
女生 | |||
總計(jì) | 50 |
(ii)據(jù)此列聯(lián)表判斷,能否在犯錯(cuò)誤概率不超過10%的前提下認(rèn)為“該學(xué)科成績(jī)與性別有關(guān)”?
(Ⅱ)將頻率視作概率,從高三年級(jí)該學(xué)科成績(jī)中任意抽取3名學(xué)生的成績(jī),求至少2名學(xué)生的成績(jī)?yōu)閮?yōu)分的概率.
附:
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】科技創(chuàng)新能力是決定綜合國(guó)力和國(guó)際競(jìng)爭(zhēng)力的關(guān)鍵因素,也是推動(dòng)經(jīng)濟(jì)實(shí)現(xiàn)高質(zhì)量發(fā)展的重要支撐,而研發(fā)投入是科技創(chuàng)新的基本保障,下圖是某公司從2010年到2019年這10年研發(fā)投入的數(shù)據(jù)分布圖:
其中折線圖是該公司研發(fā)投入占當(dāng)年總營(yíng)收的百分比,條形圖是當(dāng)年研發(fā)投入的數(shù)值(單位:十億元).
(I)從2010年至2019年中隨機(jī)選取一年,求該年研發(fā)投入占當(dāng)年總營(yíng)收的百分比超過10%的概率;
(II)從2010年至2019年中隨機(jī)選取兩個(gè)年份,設(shè)X表示其中研發(fā)投入超過500億元的年份的個(gè)數(shù),求X的分布列和數(shù)學(xué)期望;
(III)根據(jù)圖中的信息,結(jié)合統(tǒng)計(jì)學(xué)知識(shí),判斷該公司在發(fā)展的過程中是否比較重視研發(fā),并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)(a∈R且a≠0).
(1)當(dāng)a時(shí),求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)討論函數(shù)f(x)的單調(diào)性與單調(diào)區(qū)間;
(3)若y=f(x)有兩個(gè)極值點(diǎn)x1,x2,證明:f(x1)+f(x2)<9﹣lna.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(1)求函數(shù)的極值點(diǎn);
(2)定義:若函數(shù)的圖像與直線有公共點(diǎn),我們稱函數(shù)有不動(dòng)點(diǎn).這里。,若,如果函數(shù)存在不動(dòng)點(diǎn),求實(shí)數(shù)取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com