【題目】已知函數(shù).
(1)討論函數(shù)的單調性;
(2)若函數(shù)在區(qū)間上存在兩個不同零點,求實數(shù)的取值范圍.
【答案】(1)答案見解析;(2).
【解析】
試題分析:(1)先求導數(shù),再根據(jù)a討論導函數(shù)零點,根據(jù)導函數(shù)零點情況討論導函數(shù)符號,根據(jù)導函數(shù)符號確定函數(shù)單調性,(2)先分離,再利用導數(shù)研究函數(shù)單調性,最后根據(jù)圖像確定存在兩個不同零點的條件,解對應不等式得實數(shù)的取值范圍.
試題解析:(1)∵
①若時,,此時函數(shù)在上單調遞增;
②若時,又得:
時,此時函數(shù)在上單調遞減;
當時,此時函數(shù)在上單調遞增;
(2)由題意知:在區(qū)間上有兩個不同實數(shù)解,
即函數(shù)圖像與函數(shù)圖像有兩個不同的交點,
因為,令得:
所以當時,,函數(shù)在上單調遞減
當時,,函數(shù)在上單調遞增;
則,而,且,
要使函數(shù)圖像與函數(shù)圖像有兩個不同的交點,
所以的取值范圍為.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,B,C分別是海岸線上的兩個城市,兩城市間由筆直的海濱公路相連,B,C之間的距離為100km,海島A在城市B的正東方50處.從海島A到城市C,先乘船按北偏西θ角(,其中銳角的正切值為)航行到海岸公路P處登陸,再換乘汽車到城市C.已知船速為25km/h,車速為75km/h.
(1)試建立由A經P到C所用時間與的函數(shù)解析式;
(2)試確定登陸點P的位置,使所用時間最少,并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司為確定下一年度投入某種產品的宣傳費,需了解年宣傳費對年銷售量(單位:t)的影響.該公司對近5年的年宣傳費和年銷售量數(shù)據(jù)進行了研究,發(fā)現(xiàn)年宣傳費x(萬元)和年銷售量y(單位:t)具有線性相關關系,并對數(shù)據(jù)作了初步處理,得到下面的一些統(tǒng)計量的值.
(1)根據(jù)表中數(shù)據(jù)建立年銷售量y關于年宣傳費x的回歸方程;
(2)已知這種產品的年利潤z與x,y的關系為,根據(jù)(1)中的結果回答下列問題:
①當年宣傳費為10萬元時,年銷售量及年利潤的預報值是多少?
②估算該公司應該投入多少宣傳費,才能使得年利潤與年宣傳費的比值最大.
附:回歸方程中的斜率和截距的最小二乘估計公式分別為
參考數(shù)據(jù):.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)(,且).
(Ⅰ)求函數(shù)的單調區(qū)間;
(Ⅱ)求函數(shù)在上的最大值.
【答案】(Ⅰ)的單調增區(qū)間為,單調減區(qū)間為.(Ⅱ)當時, ;當時, .
【解析】【試題分析】(I)利用的二階導數(shù)來研究求得函數(shù)的單調區(qū)間.(II) 由(Ⅰ)得在上單調遞減,在上單調遞增,由此可知.利用導數(shù)和對分類討論求得函數(shù)在不同取值時的最大值.
【試題解析】
(Ⅰ),
設 ,則.
∵, ,∴在上單調遞增,
從而得在上單調遞增,又∵,
∴當時, ,當時, ,
因此, 的單調增區(qū)間為,單調減區(qū)間為.
(Ⅱ)由(Ⅰ)得在上單調遞減,在上單調遞增,
由此可知.
∵, ,
∴.
設,
則 .
∵當時, ,∴在上單調遞增.
又∵,∴當時, ;當時, .
①當時, ,即,這時, ;
②當時, ,即,這時, .
綜上, 在上的最大值為:當時, ;
當時, .
[點睛]本小題主要考查函數(shù)的單調性,考查利用導數(shù)求最大值. 與函數(shù)零點有關的參數(shù)范圍問題,往往利用導數(shù)研究函數(shù)的單調區(qū)間和極值點,并結合特殊點,從而判斷函數(shù)的大致圖像,討論其圖象與軸的位置關系,進而確定參數(shù)的取值范圍;或通過對方程等價變形轉化為兩個函數(shù)圖象的交點問題.
【題型】解答題
【結束】
22
【題目】選修4-4:坐標系與參數(shù)方程
在直角坐標系中,圓的普通方程為. 在以坐標原點為極點,軸正半軸為極軸的極坐標系中,直線的極坐標方程為 .
(Ⅰ) 寫出圓 的參數(shù)方程和直線的直角坐標方程;
( Ⅱ ) 設直線 與軸和軸的交點分別為,為圓上的任意一點,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知甲盒內有大小相同的個紅球和個黑球,乙盒內有大小相同的個紅球和個黑球.現(xiàn)從甲、乙兩個盒內各任取個球.
(1)求取出的個球中恰有個紅球的概率;
(2)設為取出的個球中紅球的個數(shù),求的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】
已知橢圓.過點(m,0)作圓的切線l交橢圓G于A,B兩點.
(I)求橢圓G的焦點坐標和離心率;
(II)將表示為m的函數(shù),并求的最大值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com