【題目】已知函數(shù)(,且).
(Ⅰ)求函數(shù)的單調區(qū)間;
(Ⅱ)求函數(shù)在上的最大值.
【答案】(Ⅰ)的單調增區(qū)間為,單調減區(qū)間為.(Ⅱ)當時, ;當時, .
【解析】【試題分析】(I)利用的二階導數(shù)來研究求得函數(shù)的單調區(qū)間.(II) 由(Ⅰ)得在上單調遞減,在上單調遞增,由此可知.利用導數(shù)和對分類討論求得函數(shù)在不同取值時的最大值.
【試題解析】
(Ⅰ),
設 ,則.
∵, ,∴在上單調遞增,
從而得在上單調遞增,又∵,
∴當時, ,當時, ,
因此, 的單調增區(qū)間為,單調減區(qū)間為.
(Ⅱ)由(Ⅰ)得在上單調遞減,在上單調遞增,
由此可知.
∵, ,
∴.
設,
則 .
∵當時, ,∴在上單調遞增.
又∵,∴當時, ;當時, .
①當時, ,即,這時, ;
②當時, ,即,這時, .
綜上, 在上的最大值為:當時, ;
當時, .
[點睛]本小題主要考查函數(shù)的單調性,考查利用導數(shù)求最大值. 與函數(shù)零點有關的參數(shù)范圍問題,往往利用導數(shù)研究函數(shù)的單調區(qū)間和極值點,并結合特殊點,從而判斷函數(shù)的大致圖像,討論其圖象與軸的位置關系,進而確定參數(shù)的取值范圍;或通過對方程等價變形轉化為兩個函數(shù)圖象的交點問題.
【題型】解答題
【結束】
22
【題目】選修4-4:坐標系與參數(shù)方程
在直角坐標系中,圓的普通方程為. 在以坐標原點為極點,軸正半軸為極軸的極坐標系中,直線的極坐標方程為 .
(Ⅰ) 寫出圓 的參數(shù)方程和直線的直角坐標方程;
( Ⅱ ) 設直線 與軸和軸的交點分別為,為圓上的任意一點,求的取值范圍.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)是定義在R上的奇函數(shù),且當x≥0時,f(x)=.
(1)求f(x)的解析式;
(2)判斷f(x)的單調性;
(3)若對任意的t∈R,不等式f(k-3t2)+f(t2+2t)≤0恒成立,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】有下列說法:
①函數(shù)y=cos(-2x)的最小正周期是π;
②終邊在y軸上的角的集合是{α|α=,k∈Z};
③在同一直角坐標系中,函數(shù)y=sinx的圖象和函數(shù)y=x的圖象有三個公共點;
④函數(shù)y=sin(x-)在[0,π]上是增函數(shù).其中,正確的說法是________.(填序號)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知某四面體的六條棱長分別為3,3,2,2,2,2,則兩條較長棱所在直線所成角的余弦值為( )
A. 0B. C. 0或D. 以上都不對
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2018年4月4日召開的國務院常務會議明確將進一步推動網絡提速降費工作落實,推動我國數(shù)字經濟發(fā)展和信息消費,今年移動流量資費將再降以上,為響應國家政策,某通訊商計劃推出兩款優(yōu)惠流量套餐,詳情如下:
套餐名稱 | 月套餐費/元 | 月套餐流量/M |
A | 30 | 3000 |
B | 50 | 6000 |
這兩款套餐均有以下附加條款:套餐費用月初一次性收取,手機使用流量一旦超出套餐流量,系統(tǒng)就會自動幫用戶充值流量,資費20元;如果又超出充值流量,系統(tǒng)再次自動幫用戶充值流量,資費20元,以此類推.此外,若當月流量有剩余,系統(tǒng)將自動清零,不可次月使用.
小張過去50個月的手機月使用流量(單位:M)的頻數(shù)分布表如下:
月使用流量分組 | ||||||
頻數(shù) | 4 | 5 | 11 | 16 | 12 | 2 |
根據(jù)小張過去50個月的手機月使用流量情況,回答以下幾個問題:
(1)若小張選擇A套餐,將以上頻率作為概率,求小張在某一個月流量費用超過50元的概率;
(2)小張擬從A或B套餐中選定一款,若以月平均費用作為決策依據(jù),他應訂哪一種套餐?說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某商場銷售某種商品的經驗表明,該商品每日的銷售量(單位:千克)與銷售價格(單位:元/千克)滿足,其中,為常數(shù).已知銷售價格為7元/千克時,每日可售出該商品11千克.
(1)求的值;
(2)若該商品成本為5元/千克,試確定銷售價格值,使商場每日銷售該商品所獲利潤最大.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,將圓上每一點的橫坐標保持不變,縱坐標變?yōu)樵瓉淼?/span>倍,再把所得曲線上每一點向下平移1個單位得到曲線.以為極點,以軸的正半軸為極軸建立極坐標系,曲線的極坐標方程是.
(1)寫出的參數(shù)方程和的直角坐標方程;
(2)設點在上,點在上,求使取最小值時點的直角坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某工廠有兩臺不同機器A和B生產同一種產品各10萬件,現(xiàn)從各自生產的產品中分別隨機抽取二十件,進行品質鑒定,鑒定成績的莖葉圖如下所示:
該產品的質量評價標準規(guī)定:鑒定成績達到的產品,質量等級為優(yōu)秀;鑒定成績達到的產品,質量等級為良好;鑒定成績達到的產品,質量等級為合格.將這組數(shù)據(jù)的頻率視為整批產品的概率.
(1)從等級為優(yōu)秀的樣本中隨機抽取兩件,記為來自B機器生產的產品數(shù)量,寫出的分布列,并求的數(shù)學期望;
(2)完成下列列聯(lián)表,以產品等級是否達到良好以上(含良好)為判斷依據(jù),判斷能不能在誤差不超過0.05的情況下,認為B機器生產的產品比A機器生產的產品好;
A生產的產品 | B生產的產品 | 合計 | |
良好以上(含良好) | |||
合格 | |||
合計 |
(3)已知優(yōu)秀等級產品的利潤為12元/件,良好等級產品的利潤為10元/件,合格等級產品的利潤為5元/件,A機器每生產10萬件的成本為20萬元,B機器每生產10萬件的成本為30萬元;該工廠決定:按樣本數(shù)據(jù)測算,兩種機器分別生產10萬件產品,若收益之差達到5萬元以上,則淘汰收益低的機器,若收益之差不超過5萬元,則仍然保留原來的兩臺機器.你認為該工廠會仍然保留原來的兩臺機器嗎?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知為拋物線:的焦點,過的動直線交拋物線于,兩點.當直線與軸垂直時,.
(1)求拋物線的方程;
(2)設直線的斜率為1且與拋物線的準線相交于點,拋物線上存在點使得直線,,的斜率成等差數(shù)列,求點的坐標.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com