如圖,在Rt△ABC中,∠CAB=90°,AB=2,AC=。一曲線E過點C,動點P在曲線E上運動,且保持|PA|+|PB|的值不變,直線l經(jīng)過A與曲線E交于M、N兩點。
(1)建立適當?shù)淖鴺讼担笄E的方程;
(2)設直線l的斜率為k,若∠MBN為鈍角,求k的取值范圍。
(1)曲線E方程為(2)k的取值范圍是
(1)以AB所在直線為x軸,AB的中點O為原點建立直角坐標系,則A(-1,0),B(1,0)
由題設可得
∴動點P的軌跡方程為,則
∴曲線E方程為
(2)直線MN的方程為


∴方程有兩個不等的實數(shù)根





∵∠MBN是鈍角
,即
解得:
又M、B、N三點不共線
 
綜上所述,k的取值范圍是
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知點在圓上移動,點在橢圓上移動,求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設橢圓的中心在原點,焦點在軸上,離心率.已知點到這個橢圓上的點的最遠距離為,求這個橢圓方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓的左、右焦點分別為,若以為圓心,為半徑作圓,過橢圓上一點作此圓的切線,切點為,且的最小值不小于為
(1)求橢圓的離心率的取值范圍;
(2)設橢圓的短半軸長為,圓軸的右交點為,過點作斜率為的直線與橢圓相交于兩點,若,求直線被圓截得的弦長的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

某檢驗員通常用一個直徑為2 cm和一個直徑為1 cm的標準圓柱,檢測一個直徑為3 cm的圓柱,為保證質(zhì)量,有人建議再插入兩個合適的同號標準圓柱,問這兩個標準圓柱的直徑為多少?

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分14分)
橢圓與直線相交于兩點,且
為原點).
(1)求證:為定值;(2)若離心率,求橢圓長軸的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

是橢圓的兩個焦點,是橢圓上一點,若,證明:的面積只與橢圓的短軸長有關

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知m,n,m+n成等差數(shù)列,m,n,mn成等比數(shù)列,則橢圓的離心率為           

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知橢圓的焦點是橢圓上一點,且,的等差中項,則橢圓的標準方程是(     ).
A.B.C.D.

查看答案和解析>>

同步練習冊答案