【題目】設函數(shù),
(1)當時,求函數(shù)的單調區(qū)間;
(2)當, 時,求證: .
【答案】(1)增區(qū)間為: , .減區(qū)間為, .(2) 見解析。
【解析】試題分析:(1)本問考查利用導數(shù)求函數(shù)的單調性,首先確定函數(shù)的定義域為,對求導數(shù),解得增區(qū)間,解得減區(qū)間;(2)本問考查利有導數(shù)證明不等式,當時,只需證: ,即轉化為證明當時成立,構造函數(shù),轉化為證明在時恒成立即可,轉化為求函數(shù)的最小值問題.
試題解析:(1)函數(shù)的定義域為,當時, ,
令: ,得: 或,所以函數(shù)單調增區(qū)間為: , .
,得: ,所以函數(shù)單調減區(qū)間為, .
(2)若證, 成立,只需證: ,
即: 當時成立.
設.
∴,顯然在內是增函數(shù),
且, ,
∴在內有唯一零點,使得: ,
且當, ;
當, .
∴在遞減,在遞增.
,
∵,∴.
∴,∴成立.
科目:高中數(shù)學 來源: 題型:
【題目】據(jù)氣象中心觀察和預測:發(fā)生于M地的沙塵暴一直向正南方向移動,其移動速度v(km/h)與時間t(h)的函數(shù)圖象如圖所示,過線段OC上一點T(t,0)作橫軸的垂線l,梯形OABC在直線l左側部分的面積即為t(h)內沙塵暴所經(jīng)過的路程s(km).
(1)當t=4時,求s的值;
(2)將s隨t變化的規(guī)律用數(shù)學關系式表示出來.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù)f(x)=(x2﹣3)ex , 當m在R上變化時,設關于x的方程f2(x)﹣mf(x)﹣ =0的不同實數(shù)解的個數(shù)為n,則n的所有可能的值為( )
A.3
B.1或3
C.3或5
D.1或3或5
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】橢圓與的中心在原點,焦點分別在軸與軸上,它們有相同的離心率,并且的短軸為的長軸,與的四個焦點構成的四邊形面積是.
(1)求橢圓與的方程;
(2)設是橢圓上非頂點的動點,與橢圓長軸兩個頂點,的連線,分別與橢圓交于,點.
(i)求證:直線,斜率之積為常數(shù);
(ii)直線與直線的斜率之積是否為常數(shù)?若是,求出該值;若不是,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù)f(x)=ka﹣x(k,a為常數(shù),a>0且a≠1)的圖象過點A(0,1),B(3,8).
(1)求函數(shù)f(x)的解析式;
(2)若函數(shù)g(x)= 是奇函數(shù),求b的值;
(3)在(2)的條件下判斷函數(shù)g(x)的單調性,并用定義證明你的結論;
(4)解不等式g(3x)+g(x﹣3﹣x2)<0.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù) ,其反函數(shù)為y=g(x).
(1)若g(mx2+2x+1)的定義域為R,求實數(shù)m的取值范圍;
(2)當x∈[﹣1,1]時,求函數(shù)y=[f(x)]2﹣2af(x)+3的最小值h(a);
(3)是否存在實數(shù)m>n>2,使得函數(shù)y=h(x)的定義域為[n,m],值域為[n2 , m2],若存在,求出m、n的值;若不存在,則說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓 和點P(4,2),直線l經(jīng)過點P且與橢圓交于A,B兩點.
(1)當直線l的斜率為 時,求線段AB的長度;
(2)當P點恰好為線段AB的中點時,求l的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設 = , =(4sinx,cosx﹣sinx),f(x)= .
(1)求函數(shù)f(x)的解析式;
(2)已知常數(shù)ω>0,若y=f(ωx)在區(qū)間 是增函數(shù),求ω的取值范圍;
(3)設集合A= ,B={x||f(x)﹣m|<2},若AB,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校高一(1)班全體男生的一次數(shù)學測試成績的莖葉圖和頻率分布直方圖都受到不同程度的破壞,但可見部分如圖甲所示,據(jù)此解答如下問題:
(1)求該班全體男生的人數(shù);
(2)求分數(shù)在[80,90)之間的男生人數(shù),并計算頻率公布直方圖如圖乙中[80,90)之間的矩形的高.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com