【題目】某醫(yī)院為篩查某種疾病,需要檢驗血液是否為陽性,現(xiàn)有份血液樣本,有以下兩種檢驗方式:①逐份檢驗,列需要檢驗次;②混合檢驗,將其(且)份血液樣本分別取樣混合在一起檢驗.若檢驗結(jié)果為陰性,這份的血液全為陰性,因而這份血液樣本只要檢驗一次就夠了,如果檢驗結(jié)果為陽性,為了明確這份血液究竟哪幾份為陽性,就要對這份再逐份檢驗,此時這份血液的檢驗次數(shù)總共為次.假設(shè)在接受檢驗的血液樣本中,每份樣本的檢驗結(jié)果是陽性還是陰性都是獨立的,且每份樣本是陽性結(jié)果的概率為.
(1)假設(shè)有5份血液樣本,其中只有2份樣本為陽性,若采用逐份檢驗的方式,求恰好經(jīng)過3次檢驗就能把陽性樣本全部檢驗出來的概率.
(2)現(xiàn)取其中(且)份血液樣本,記采用逐份檢驗方式,樣本需要檢驗的總次數(shù)為,采用混合檢驗方式,樣本需要檢驗的總次數(shù)為.
(i)運用概率統(tǒng)計的知識,若,試求關(guān)于的函數(shù)關(guān)系式;
(ii)若,且采用混合檢驗方式可以使得樣本需要檢驗的總次數(shù)的期望值比逐份檢驗的總次數(shù)期望值更少,求的最大值.
參考數(shù)據(jù):,,.
科目:高中數(shù)學 來源: 題型:
【題目】某城市的華為手機專賣店對該市市民使用華為手機的情況進行調(diào)查.在使用華為手機的用戶中,隨機抽取100名,按年齡(單位:歲)進行統(tǒng)計的頻率分布直方圖如圖:
(1)根據(jù)頻率分布直方圖,分別求出樣本的平均數(shù)(同一組數(shù)據(jù)用該區(qū)間的中點值作代表)和中位數(shù)的估計值(均精確到個位);
(2)在抽取的這100名市民中,按年齡進行分層抽樣,抽取20人參加華為手機宣傳活動,再從這20人中年齡在和的人群里,隨機選取2人各贈送一部華為手機,求這2名市民年齡都在內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了保障某治療新冠肺炎藥品的主要藥理成分在國家藥品監(jiān)督管理局規(guī)定的值范圍內(nèi),武漢某制藥廠在該藥品的生產(chǎn)過程中,檢驗員在一天中按照規(guī)定從該藥品生產(chǎn)線上隨機抽取20件產(chǎn)品進行檢測,測量其主要藥理成分含量(單位:mg).根據(jù)生產(chǎn)經(jīng)驗,可以認為這條藥品生產(chǎn)線正常狀態(tài)下生產(chǎn)的產(chǎn)品的主要藥理成分含量服從正態(tài)分布N(μ,σ2).在一天內(nèi)抽取的20件產(chǎn)品中,如果有一件出現(xiàn)了主要藥理成分含量在(μ﹣3σ,μ+3σ)之外的藥品,就認為這條生產(chǎn)線在這一天的生產(chǎn)過程可能出現(xiàn)了異常情況,需對本次的生產(chǎn)過程進行檢查.
(1)下面是檢驗員在2月24日抽取的20件藥品的主要藥理成分含量:
10.02 | 9.78 | 10.04 | 9.92 | 10.14 | 10.04 | 9.22 | 10.13 | 9.91 | 9.95 |
10.09 | 9.96 | 9.88 | 10.01 | 9.98 | 9.95 | 10.05 | 10.05 | 9.96 | 10.12 |
經(jīng)計算得xi=9.96,s0.19;其中xi為抽取的第i件藥品的主要藥理成分含量,i=1,2,…,20.用樣本平均數(shù)作為μ的估計值,用樣本標準差s作為σ的估計值,利用估計值判斷是否需對本次的生產(chǎn)過程進行檢查?
(2)假設(shè)生產(chǎn)狀態(tài)正常,記X表示某天抽取的20件產(chǎn)品中其主要藥理成分含量在(μ﹣3σ,μ+3σ)之外的藥品件數(shù),求/span>P(X=1)及X的數(shù)學期望.
附:若隨機變量Z服從正態(tài)分布N(μ,σ2),則P(μ﹣3σ<Z<μ+3σ)≈0.9974,0.997419≈0.95.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱錐PABC中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M為線段AD上一點,AM=2MD,N為PC的中點.
(Ⅰ)證明MN∥平面PAB;
(Ⅱ)求直線AN與平面PMN所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x),若存在x1,x2∈R且x1≠x2,使得f(x1)=f(x2)成立,則實數(shù)a的取值范圍是( )
A.[3,+∞)B.(3,+∞)C.(﹣∞,3)D.(﹣∞,3]
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),、、,且都有,滿足的實數(shù)有且只有個,給出下述四個結(jié)論:
①滿足題目條件的實數(shù)有且只有個;②滿足題目條件的實數(shù)有且只有個;
③在上單調(diào)遞增;④的取值范圍是.
其中所有正確結(jié)論的編號是( )
A.①④B.②③C.①②③D.①③④
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】三國時代吳國數(shù)學家趙爽所注《周髀算經(jīng)》中給出了勾股定理的絕妙證明,下面是趙爽的弦圖及注文,弦圖是一個以勾股形之弦為邊的正方形,其面積稱為弦實,圖中包含四個全等的勾股形及一個小正方形,分別涂成紅(朱)色及黃色其面積稱為朱實,黃實,利朱用2×勾×股+(股-勾)2=4×朱實+黃實=弦實,化簡得勾2+股2=弦2,設(shè)勾股中勾股比為,若向弦圖內(nèi)隨機拋擲1000顆圖釘(大小忽略不計),則落在黃色圖形內(nèi)的圖釘數(shù)大約為( )
A.886B.500C.300D.134
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓,左、右頂點分別為,,上、下頂點分別為,,且,為等邊三角形,過點的直線與橢圓在軸右側(cè)的部分交于、兩點,為坐標原點.
(1)求橢圓的標準方程;
(2)求面積的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com