【題目】三國(guó)時(shí)代吳國(guó)數(shù)學(xué)家趙爽所注《周髀算經(jīng)》中給出了勾股定理的絕妙證明,下面是趙爽的弦圖及注文,弦圖是一個(gè)以勾股形之弦為邊的正方形,其面積稱(chēng)為弦實(shí),圖中包含四個(gè)全等的勾股形及一個(gè)小正方形,分別涂成紅(朱)色及黃色其面積稱(chēng)為朱實(shí),黃實(shí),利朱用2×勾×股+(股-勾)2=4×朱實(shí)+黃實(shí)=弦實(shí),化簡(jiǎn)得勾2+股2=弦2,設(shè)勾股中勾股比為,若向弦圖內(nèi)隨機(jī)拋擲1000顆圖釘(大小忽略不計(jì)),則落在黃色圖形內(nèi)的圖釘數(shù)大約為( )

A.886B.500C.300D.134

【答案】D

【解析】

設(shè)三角形的直角邊分別為,,利用幾何概型得出圖釘落在小正方形內(nèi)的概率即可得出結(jié)論.

設(shè)勾股形的勾股數(shù)分別為,,則弦為,故大正方形的面積為

小正方形的面積為,

圖釘落在黃色圖形內(nèi)的概率為,

落在黃色圖形內(nèi)的圖釘數(shù)大約為.

故選:D

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】有人玩擲均勻硬幣走跳棋的游戲,棋盤(pán)上標(biāo)有第0站(出發(fā)地),第1站,第2站,……,第100. 一枚棋子開(kāi)始在出發(fā)地,棋手每擲一次硬幣,這枚棋子向前跳動(dòng)一次,若擲出正向,棋子向前跳一站,若擲出反面,棋子向前跳兩站,直到棋子跳到第99站(獲勝)或跳到第100站(失。⿻r(shí),該游戲結(jié)束. 設(shè)棋子跳到第站的概率為.

1)求,,,并根據(jù)棋子跳到第站的情況寫(xiě)出、的遞推關(guān)系式();

2)求證:數(shù)列為等比數(shù)列;

3)求玩該游戲獲勝的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某醫(yī)院為篩查某種疾病,需要檢驗(yàn)血液是否為陽(yáng)性,現(xiàn)有份血液樣本,有以下兩種檢驗(yàn)方式:①逐份檢驗(yàn),列需要檢驗(yàn)次;②混合檢驗(yàn),將其)份血液樣本分別取樣混合在一起檢驗(yàn).若檢驗(yàn)結(jié)果為陰性,這份的血液全為陰性,因而這份血液樣本只要檢驗(yàn)一次就夠了,如果檢驗(yàn)結(jié)果為陽(yáng)性,為了明確這份血液究竟哪幾份為陽(yáng)性,就要對(duì)這份再逐份檢驗(yàn),此時(shí)這份血液的檢驗(yàn)次數(shù)總共為.假設(shè)在接受檢驗(yàn)的血液樣本中,每份樣本的檢驗(yàn)結(jié)果是陽(yáng)性還是陰性都是獨(dú)立的,且每份樣本是陽(yáng)性結(jié)果的概率為.

1)假設(shè)有5份血液樣本,其中只有2份樣本為陽(yáng)性,若采用逐份檢驗(yàn)的方式,求恰好經(jīng)過(guò)3次檢驗(yàn)就能把陽(yáng)性樣本全部檢驗(yàn)出來(lái)的概率.

2)現(xiàn)取其中)份血液樣本,記采用逐份檢驗(yàn)方式,樣本需要檢驗(yàn)的總次數(shù)為,采用混合檢驗(yàn)方式,樣本需要檢驗(yàn)的總次數(shù)為.

(i)運(yùn)用概率統(tǒng)計(jì)的知識(shí),若,試求關(guān)于的函數(shù)關(guān)系式

(ii)若,且采用混合檢驗(yàn)方式可以使得樣本需要檢驗(yàn)的總次數(shù)的期望值比逐份檢驗(yàn)的總次數(shù)期望值更少,求的最大值.

參考數(shù)據(jù):,,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】試求所有由互異正奇數(shù)構(gòu)成的三元集{a,b,c},使其滿足:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解全市統(tǒng)考情況,從所有參加考試的考生中抽取4000名考生的成績(jī),頻率分布直方圖如下圖所示.

(1)求這4000名考生的半均成績(jī)(同一組中數(shù)據(jù)用該組區(qū)間中點(diǎn)作代表);

2)由直方圖可認(rèn)為考生考試成績(jī)z服從正態(tài)分布,其中分別取考生的平均成績(jī)和考生成績(jī)的方差,那么抽取的4000名考生成績(jī)超過(guò)84.81分(含84.81分)的人數(shù)估計(jì)有多少人?

3)如果用抽取的考生成績(jī)的情況來(lái)估計(jì)全市考生的成績(jī)情況,現(xiàn)從全市考生中隨機(jī)抽取4名考生,記成績(jī)不超過(guò)84.81分的考生人數(shù)為,求.(精確到0.001

附:

,則

.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在四棱錐中,平面是正三角形,的交點(diǎn)恰好是中點(diǎn),又,.

(1)求證:;

(2)設(shè)的中點(diǎn),點(diǎn)在線段上,若直線平面,求的長(zhǎng);

(3)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】近年空氣質(zhì)量逐步惡化,霧霾天氣現(xiàn)象出現(xiàn)增多,大氣污染危害加重. 大氣污染可引起心悸、呼吸困難等心肺疾病。為了解某市心肺疾病是否與性別有關(guān),在某醫(yī)院隨機(jī)的對(duì)入院50人進(jìn)行了問(wèn)卷調(diào)查得到了如在的列聯(lián)表:已知在全部50人中隨機(jī)抽取1人,抽到患心肺疾病的人的概率為.

(Ⅰ)請(qǐng)將右面的列聯(lián)表補(bǔ)充完整;

患心肺疾病

不患心肺疾病

合計(jì)

5

10

合計(jì)

50

(Ⅱ)是否有99.5%的把握認(rèn)為患心肺疾病與性別有關(guān)?說(shuō)明你的理由;

(Ⅲ)已知在患心肺疾病的10位女性中,有3位又患胃病.現(xiàn)在從患心肺疾病的10位女性中,選出3名進(jìn)行其他方面的排查,記選出患胃病的女性人數(shù)為,求的分布列以及數(shù)學(xué)期望.

下面的臨界值表供參考:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(參考公式 其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】雙曲線的左右焦點(diǎn)分別為,為坐標(biāo)原點(diǎn).為曲線右支上的點(diǎn),點(diǎn)外角平分線上,且.若恰為頂角為的等腰三角形,則該雙曲線的離心率為( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在幾何體中,四邊形是菱形,,平面平面,.

1)求證:;

2)若,求三棱錐和三棱錐的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案