【題目】已知函數(shù),、、,且都有,滿足的實數(shù)有且只有個,給出下述四個結(jié)論:
①滿足題目條件的實數(shù)有且只有個;②滿足題目條件的實數(shù)有且只有個;
③在上單調(diào)遞增;④的取值范圍是.
其中所有正確結(jié)論的編號是( )
A.①④B.②③C.①②③D.①③④
【答案】D
【解析】
設,由,得出,由題意得出為函數(shù)的最小值,為函數(shù)的最大值,作出函數(shù)的圖象,結(jié)合圖象得出,進而對各結(jié)論進行驗證.
,當時,.
設進行替換,作出函數(shù)的圖象如下圖所示:
由于函數(shù)在上滿足的實數(shù)有且只有個,
即函數(shù)在上有且只有個零點,
由圖象可知,解得,結(jié)論④正確;
由圖象知,在上只有一個最小值點,有一個或兩個最大值點,結(jié)論①正確,結(jié)論②錯誤;
當時,,
由知,所以在上遞增,
則函數(shù)在上單調(diào)遞增,結(jié)論③正確.綜上,正確的有①③④.故選:D.
科目:高中數(shù)學 來源: 題型:
【題目】下面有五個命題:
①函數(shù)的最小正周期是;
②終邊在y軸上的角的集合是;
③在同一坐標系中,函數(shù)的圖象和函數(shù)的圖象有一個公共點;
④把函數(shù);
⑤在中,若,則是等腰三角形;
其中真命題的序號是( )
A.(1)(2)(3) B.(2)(3)(4)
C.(3)(4)(5) D.(1)(4)(5)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知a為實數(shù),函數(shù)f(x)=aln x+x2-4x.
(1)是否存在實數(shù)a,使得f(x)在x=1處取得極值?證明你的結(jié)論;
(2)設g(x)=(a-2)x,若x0∈,使得f(x0)≤g(x0)成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的離心率,為橢圓的右焦點,,為橢圓的上、下頂點,且的面積為.
(1)求橢圓的方程;
(2)動直線與橢圓交于,兩點,證明:在第一象限內(nèi)存在定點,使得當直線與直線的斜率均存在時,其斜率之和是與無關(guān)的常數(shù),并求出所有滿足條件的定點的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù),,其中a,.
(1)求的單調(diào)區(qū)間;
(2)若存在極值點,且,其中,求證:;
(3)設,函數(shù),求證:在區(qū)間上的最大值不小于.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,曲線C1的參數(shù)方程為(θ為參數(shù)),以原點為極點,x軸非負半軸為極軸,建立極坐標系,曲線C2的極坐標方程為.
(1)求曲線C1的極坐標方程以及曲線C2的直角坐標方程;
(2)若直線l:y=kx與曲線C1、曲線C2在第一象限交于P、Q,且|OQ|=|PQ|,點M的直角坐標為(1,0),求△PMQ的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】線段AB為圓的一條直徑,其端點A,B在拋物線 上,且A,B兩點到拋物線C焦點的距離之和為11.
(1)求拋物線C的方程及直徑AB所在的直線方程;
(2)過M點的直線l交拋物線C于P,Q兩點,拋物線C在P,Q處的切線相交于N點,求面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,三棱柱中,分別為棱的中點.
(1)在上確定點M,使平面,并說明理由。
(2)若側(cè)面側(cè)面,求直線與平面所成角的正弦值。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】金秋九月,丹桂飄香,某高校迎來了一大批優(yōu)秀的學生,新生接待其實也是和社會溝通的一個平臺.校團委、學生會從在校學生中隨機抽取了160名學生,對是否愿意投入到新生接待工作進行了問卷調(diào)查,統(tǒng)計數(shù)據(jù)如下:
愿意 | 不愿意 | |
男生 | 60 | 20 |
女生 | 40 | 40 |
(1)通過估算,試判斷男、女哪種性別的學生愿意投入到新生接待工作的概率更大.
(2)能否有99%的把握認為,愿意參加新生接待工作與性別有關(guān)?
附:,其中.
0.05 | 0.01 | 0.001 | |
3.841 | 6.635 | 10.828 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com