【題目】已知二次函數(shù)f(x)=ax2+bx+c.
(1)若a=c>0,f(1)=1,對(duì)任意x∈|[﹣2,2],f(x)的最大值與最小值之和為g(a),求g(a)的表達(dá)式;
(2)若a,b,c為正整數(shù),函數(shù)f(x)在(﹣ , )上有兩個(gè)不同零點(diǎn),求a+b+c的最小值.
【答案】
(1)解:a=c>0,f(1)=1,則a+b+a=1,b=1﹣2a,
∴f(x))=ax2+(1﹣2a)x+a=a + ,
當(dāng)1﹣ ≤﹣2,即0<a≤ 時(shí),g(a)=f(﹣2)+f(2)=10a;
當(dāng)﹣2<1﹣ ≤0,即 <a≤ 時(shí),g(a)=f(1﹣ )+f(2)=a﹣ +3,
當(dāng)a> 時(shí),g(a)=f(1﹣ )+f(﹣2)=9a﹣ ﹣1,
綜上所述,g(a)=
(2)解:函數(shù)f(x)在(﹣ , )上有兩個(gè)不同零點(diǎn)x1,x2,則x1+x2=﹣ <0, >x1x2= >0
∴a>16c,
由根的分布可知f(﹣ )= a﹣ b+c>0,即a+16c>4b,
∵a,b,c為正整數(shù),∴a+16c≥4b+1
f(0)=c>0,△>0,b ,
∴a+16c>8 +1,可得( )2>1,
∵a>16c,∴ >1,
∴ ,∴a>25,
∴a≥26,
∴b ≥ ,∴b≥11,c≥1.
f(x)=26x2+11x+1,經(jīng)檢驗(yàn)符合題意,故a+b+c的最小值為38
【解析】(1)配方,分類討論,求g(a)的表達(dá)式;(2)若a,b,c為正整數(shù),函數(shù)f(x)在(﹣ , )上有兩個(gè)不同零點(diǎn),確定a,b,c的范圍,即可求a+b+c的最小值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)= ,若方程f(x)=a有四個(gè)不同的解x1 , x2 , x3 , x4 , 且x1<x2<x3<x4 , 則x3(x1+x2)+ 的取值范圍是( )
A.(﹣1,+∞)
B.(﹣1,1]
C.(﹣∞,1)
D.[﹣1,1)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某蔬菜基地種植西紅柿,由歷年市場(chǎng)行情得知,從二月一日起的300天內(nèi),西紅柿場(chǎng)售價(jià)與上市時(shí)間的關(guān)系如圖一的一條折線表示;西紅柿的種植成本與上市時(shí)間的關(guān)系如圖二的拋物線段表示.
(1)寫出圖一表示的市場(chǎng)售價(jià)與時(shí)間的函數(shù)關(guān)系式p=f(t);寫出圖二表示的種植成本與時(shí)間的函數(shù)關(guān)系式Q=g(t);
(2)認(rèn)定市場(chǎng)售價(jià)減去種植成本為純收益,問(wèn)何時(shí)上市的西紅柿純收益最大?(注:市場(chǎng)售價(jià)各種植成本的單位:元/102㎏,時(shí)間單位:天)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知p:方程x2+mx+1=0有兩個(gè)不相等的負(fù)根;q:方程4x2+4(m-2)x+1=0無(wú)實(shí)根.若p或q為真,p且q為假,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=2cosxsin(x﹣ )+ .
(1)求函數(shù)f(x)的對(duì)稱軸方程;
(2)若方程sin2x+2|f(x+ )|﹣m+1=0在x∈[﹣ , ]上有三個(gè)實(shí)數(shù)解,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C: =1(a>b>0)的離心率為 ,A(a,0),B(0,b),O(0,0),△OAB的面積為4,
(1)求橢圓的標(biāo)準(zhǔn)方程
(2)設(shè)直線l:y=kx+1與橢圓C相交于P,Q兩點(diǎn),是否存在這樣的實(shí)數(shù)k,使得以PQ為直徑的圓過(guò)原點(diǎn),若存在,請(qǐng)求出k的值:若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列四個(gè)命題中正確的有
①函數(shù)y= 的定義域是{x|x≠0};
②lg =lg(x﹣2)的解集為{3};
②31﹣x﹣2=0的解集為{x|x=1﹣log32};
④lg(x﹣1)<1的解集是{x|x<11}.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)等比數(shù)列的公比為,前項(xiàng)和.
(1)求的取值范圍;
(2)設(shè),記的前項(xiàng)和為,試比較與的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)集合是的兩個(gè)非空子集,且滿足集合中的最大數(shù)小于集合中的最小數(shù),記滿足條件的集合對(duì)的個(gè)數(shù)為.
(1)求的值;
(2)求的表達(dá)式.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com