【題目】已知p:方程x2mx+1=0有兩個不相等的負根;q:方程4x2+4(m-2)x+1=0無實根.若pq為真,pq為假,求m的取值范圍.

【答案】m≥31<m≤2.

【解析】本題考查命題的真假判斷與應用,對兩個命題為真時進行化簡,正確理解“pq”為真,pq”為假的意義是解題的關(guān)鍵.

先對命題p,q為真是,求出各自成立時參數(shù)所滿足的范圍,再根據(jù)“pq”為真,pq”為假判斷出兩命題的真假情況,然后求出實數(shù)m的取值范圍

解:若方程x2mx10有兩個不相等的負根,則解得m>2,即pm>2.

若方程4x24(m2)x10無實根,則Δ16(m2)21616(m24m3)<0,解得1<m<3,即q1<m<3.pq為真,所以p、q至少有一個為真,又pq為假,所以pq至少有一個為假.因此,p、q兩命題應一真一假,即pq假,或pq真.所以

解得m≥31<m≤2.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù), ).

(Ⅰ)若,設(shè),試證明存在唯一零點,并求的最大值;

若關(guān)于的不等式的解集中有且只有兩個整數(shù),求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知a,b,c分別為△ABC三個內(nèi)角A,B,C的對邊,c= asinC﹣ccosA.
(1)求A;
(2)若a=2,△ABC的面積為 ,求b,c.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某學校高三年級有學生500人,其中男生300人,女生200人,為了研究學生的數(shù)學成績是否與性別有關(guān),現(xiàn)采用分層抽樣的方法,從中抽取了100名學生,先統(tǒng)計了他們期中考試的數(shù)學分數(shù),然后按性別分為男、女兩組,再將兩組學生的分數(shù)分成5組:[100,110),[110,120),[120,130),[130,140),[140,150]分別加以統(tǒng)計,得到如圖所示的頻率分布直方圖.
附:K2=
(1)從樣本中分數(shù)小于110分的學生中隨機抽取2人,求兩人恰好為一男一女的概率;
(2)若規(guī)定分數(shù)不小于130分的學生為“數(shù)學尖子生”,請你根據(jù)已知條件完成2×2列聯(lián)表,并判斷是否有90%的把握認為“數(shù)學尖子生與性別有關(guān)”?

P(K2≥k0

0.100

0.050

0.010

0.001

k0

2.706

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】經(jīng)市場調(diào)查,某商品每噸的價格為x(2x14)元時,該商品的月供給量為y1噸,y1=ax16a≥8);月需求量為y2 .當該商品的需求量不小于供給量時,銷售量等于供給量;當該商品的需求量小于供給量時,銷售量等于需求量.該商品的月銷售額f(x)等于月銷售量與價格的乘積.

(1)若a=32,問商品的價格為多少元時,該商品的月銷售額f(x)最大?

(2)記需求量與供給量相等時的價格為均衡價格.若該商品的均衡價格不低于每噸10元,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】四棱錐P﹣ABCD中,底面ABCD為矩形,PA⊥平面ABCD,E為PD的中點.
(1)證明:PB∥平面AEC;
(2)設(shè)AP=1,AD= ,三棱錐P﹣ABD的體積V= ,求二面角D﹣AE﹣C的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)f(x)=ax2+bx+c.
(1)若a=c>0,f(1)=1,對任意x∈|[﹣2,2],f(x)的最大值與最小值之和為g(a),求g(a)的表達式;
(2)若a,b,c為正整數(shù),函數(shù)f(x)在(﹣ , )上有兩個不同零點,求a+b+c的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知A,B,C是橢圓C: (a>b>0)上的三點,其中點A的坐標為(2,0),BC過橢圓的中心,且·=0,||=2||

(1)求橢圓C的方程;

(2)過點(0,t)的直線l(斜率存在)與橢圓C交于P,Q兩點,設(shè)D為橢圓C與y軸負半軸的交點,且||=||,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列命題中正確的是(
A.“x<﹣1”是“x2﹣x﹣2>0”的必要不充分條件
B.“P且Q”為假,則P假且 Q假
C.命題“ax2﹣2ax+3>0恒成立”是真命題,則實數(shù)a的取值范圍是0≤a<3
D.命題“若x2﹣3x+2=0,則x=2”的否命題為“若x2﹣3x+2=0,則x≠2”

查看答案和解析>>

同步練習冊答案