【題目】函數(shù)fx)=Asinωx+B的部分圖象如圖所示,其中A0ω0,|φ|

(Ⅰ)求函數(shù)yfx)解析式;

(Ⅱ)求x[0,]時,函數(shù)yfx)的值域.

【答案】(Ⅰ)fx)=2sin2x+2;(Ⅱ)[1,4].

【解析】

(Ⅰ)根據(jù)已知圖象,分析出AB,T,然后求出ω的值.根據(jù)五點作圖法求出φ的值.綜合即可寫出函數(shù)fx)的解析式.

(Ⅱ)由已知可求范圍2x[,],利用正弦函數(shù)的圖象和性質(zhì)可得sin2x)∈[,1],即可求解

解:(Ⅰ)∵根據(jù)函數(shù)fx)=Asinωx++B的一部分圖象,其中A0ω0,|φ|,可得A422,B2,

ω2,又∵2φ,∴φ,

fx)=2sin2x+2

(Ⅱ)∵x[0,],

2x[],

sin2x)∈[1],

yfx)∈[14]

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某土特產(chǎn)超市為預(yù)估2020年元旦期間游客購買土特產(chǎn)的情況,對2019年元旦期間的90位游客購買情況進(jìn)行統(tǒng)計,得到如下人數(shù)分布表.

(1)根據(jù)以上數(shù)據(jù)完成列聯(lián)表,并判斷是否有的把握認(rèn)為購買金額是否少于60元與性別有關(guān).

(2)為吸引游客,該超市推出一種優(yōu)惠方案,購買金額不少于60元可抽獎3次,每次中獎概率為p(每次抽獎互不影響,且p的值等于人數(shù)分布表中購買金額不少于60元的頻率),中獎1次減5元,中獎2次減10元,中獎3次減15.若游客甲計劃購買80元的土特產(chǎn),請列出實際付款數(shù)X()的分布列并求其數(shù)學(xué)期望.

:參考公式和數(shù)據(jù):,.

附表:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知四棱錐中,底面是邊長為4的正方形,為正三角形,的中點,過的平面平行于平面,且平面與平面的交線為,與平面的交線為

1)在圖中作出四邊形(不必說出作法和理由);

2)若,求平面與平面形成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)當(dāng)時,求曲線在點處的切線方程;

2)若在區(qū)間上單調(diào)遞增,求實數(shù)的取值范圍;

3)當(dāng)時,試寫出方程根的個數(shù).(只需寫出結(jié)論)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,直角梯形中,,,,四邊形為矩形,,平面平面.

1)求證:平面

2)求二面角的正弦值;

3)在線段上是否存在點,使得直線與平面所成角的正弦值為,若存在,求出線段的長,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)求函數(shù)的最大值;

2)若函數(shù)存在兩個零點,證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線的左、右焦點分別、,過的直線交雙曲線右支于兩點.的平分線交,若,則雙曲線的離心率為( )

A.B.2C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)若曲線與直線處相切.

①求的值;

②求證:當(dāng)時,

2)當(dāng)時,關(guān)于的不等式有解,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】太極圖被稱為“中華第一圖”,閃爍著中華文明進(jìn)程的光輝,它是由黑白兩個魚形紋組成的圖案,俗稱陰陽魚,太極圖展現(xiàn)了一種相互轉(zhuǎn)化,相對統(tǒng)一的和諧美.定義:能夠?qū)AO的周長和面積同時等分成兩個部分的函數(shù)稱為圓O的一個“太極函數(shù)”,設(shè)圓O,則下列說法中正確的是( )

A.函數(shù)是圓O的一個太極函數(shù)

B.O的所有非常數(shù)函數(shù)的太極函數(shù)都不能為偶函數(shù)

C.函數(shù)是圓O的一個太極函數(shù)

D.函數(shù)的圖象關(guān)于原點對稱是為圓O的太極函數(shù)的充要條件

查看答案和解析>>

同步練習(xí)冊答案