曲線y=3x2與x軸及直線x=1所圍成的圖形的面積為
 
考點(diǎn):定積分
專題:導(dǎo)數(shù)的概念及應(yīng)用
分析:確定積分公式中x的取值范圍,根據(jù)定積分的幾何意義表示出區(qū)域的面積,根據(jù)定積分公式解之即可
解答: 解:由題意,S=
1
0
3x2dx
=x3
|
1
0
=1.
故答案為:1.
點(diǎn)評:本題求曲線圍成的曲邊圖形的面積,著重考查了定積分的幾何意義和積分計(jì)算公式等知識,屬于基礎(chǔ)題
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在斜三棱柱ABC-A1B1C1中,側(cè)面ACC1A1⊥平面ABC,∠ACB=90°,D為BC中點(diǎn).
(Ⅰ)求證:BC⊥AA1;
(Ⅱ)求證:A1C∥平面AB1D;
(Ⅲ)若AC=AA1=BC=2,∠A1AC=60°,求三棱錐A1-ABC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=ax2-2lnx
(1)討論函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)g(x)=x2-2bx+4,當(dāng)a=1時(shí),若對任意x1∈(
1
2
3
2
),當(dāng)任意x2∈[2,4]時(shí),f(x1)≥g(x2)恒成立,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=|x-a|
(Ⅰ)當(dāng)a=2,解不等式f(x)≥4-|x-1|;
(Ⅱ)若f(x)≤1的解集為{x|0≤x≤2},
1
m
+
1
2n
=a(m>0,n>0).求證:m+2n≥4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在三棱柱ABC-A1B1C1中,AB=AC,側(cè)棱與底面垂直,點(diǎn)D是棱BC的中點(diǎn).
(1)求證:AD⊥BC1;
(2)求證:A1B∥平面ADC1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某班分成8個(gè)小組,每小組5人,現(xiàn)要從中選出4人進(jìn)行4個(gè)不同的化學(xué)實(shí)驗(yàn),且每組至多選一人,則不同的安排方法種數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,設(shè)A、B、C、D為球O上的四點(diǎn),若AD⊥平面ABC,且AD=2,∠BAC=60°,AB=2
3
,BC=3,則BC兩點(diǎn)間的球面距離是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a=
2
,b=
5
-
2
,c=
6
-
3
,則a,b,c從小到大的排列順序是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f1(x)=cosx,定義fn+1(x)為fn(x)的導(dǎo)數(shù),即fn+1(x)=f′n(x),n∈N*,若△ABC的內(nèi)角A滿足f1(A)+f2(A)+…+f2014(A)=
1
3
,則cos2A的值是
 

查看答案和解析>>

同步練習(xí)冊答案