【題目】已知函數(shù)
(1)若函數(shù)在處有最大值,求的值;
(2)當(dāng)時(shí),判斷的零點(diǎn)個(gè)數(shù),并說(shuō)明理由.
【答案】(1);(2)當(dāng)時(shí),函數(shù)無(wú)零點(diǎn);當(dāng)或時(shí),函數(shù)只有一個(gè)零點(diǎn).
【解析】
(1)根據(jù)函數(shù)最值點(diǎn)可確定,從而求得;代入的值驗(yàn)證后滿足題意,可得到結(jié)果;
(2)令,將問(wèn)題轉(zhuǎn)化為零點(diǎn)個(gè)數(shù)的求解問(wèn)題;分別在、和三種情況下,根據(jù)導(dǎo)函數(shù)得到原函數(shù)的單調(diào)性,結(jié)合零點(diǎn)存在定理和函數(shù)的最值可確定零點(diǎn)的個(gè)數(shù).
(1)由題意得:定義域?yàn)?/span>,,
在處取得最大值,,解得:.
當(dāng)時(shí),,,
,在上單調(diào)遞減,
又,則時(shí),;當(dāng)時(shí),;
在上單調(diào)遞增,在上單調(diào)遞減,,滿足題意;
綜上所述:.
(2)令,,則與的零點(diǎn)個(gè)數(shù)相等,
①當(dāng)時(shí)即,函數(shù)的零點(diǎn)個(gè)數(shù)為;
②當(dāng)時(shí), ,在上為減函數(shù),
即函數(shù)至多有一個(gè)零點(diǎn),即至多有一個(gè)零點(diǎn).
當(dāng)時(shí),,
,即,又,
函數(shù)有且只有一個(gè)零點(diǎn),即函數(shù)有且只有一個(gè)零點(diǎn);
③當(dāng)時(shí),令,即,
令,則
在上為增函數(shù),又,
故存在,使得,即.
由以上可知:當(dāng)時(shí),,為增函數(shù);當(dāng)時(shí),,為減函數(shù);
,,
令,,
則,在上為增函數(shù),
則,即,當(dāng)且僅當(dāng),時(shí)等號(hào)成立,
由以上可知:當(dāng)時(shí),有且只有一個(gè)零點(diǎn),即有且只有一個(gè)零點(diǎn);當(dāng)時(shí),無(wú)零點(diǎn),即無(wú)零點(diǎn);
綜上所述:當(dāng)時(shí),函數(shù)無(wú)零點(diǎn);當(dāng)或時(shí),函數(shù)只有一個(gè)零點(diǎn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,,,,.
(1)證明:平面;
(2)若且,為線段上一點(diǎn),且,求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】數(shù)學(xué)中的數(shù)形結(jié)合也可以組成世間萬(wàn)物的絢麗畫(huà)面,一些優(yōu)美的曲線是數(shù)學(xué)形象美、對(duì)稱美、和諧美的產(chǎn)物,曲線為四葉玫瑰線,下列結(jié)論正確的有( )
(1)方程(),表示的曲線在第二和第四象限;
(2)曲線上任一點(diǎn)到坐標(biāo)原點(diǎn)的距離都不超過(guò)2;
(3)曲線構(gòu)成的四葉玫瑰線面積大于;
(4)曲線上有5個(gè)整點(diǎn)(橫、縱坐標(biāo)均為整數(shù)的點(diǎn));
A.(1)(2)B.(1)(2)(3)
C.(1)(2)(4)D.(1)(3)(4)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知四邊形為菱形,且,取中點(diǎn)為.現(xiàn)將四邊形沿折起至,使得.
(Ⅰ)求證:平面;
(Ⅱ)求二面角的余弦值;
(Ⅲ)若點(diǎn)滿足,當(dāng)平面時(shí),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系.xOy中,曲線C1的參數(shù)方程為( 為參數(shù)),以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρ=4sinθ.
(1)求曲線C1的普通方程和C2的直角坐標(biāo)方程;
(2)已知曲線C2的極坐標(biāo)方程為,點(diǎn)A是曲線C3與C1的交點(diǎn),點(diǎn)B是曲線C3與C2的交點(diǎn),且A,B均異于原點(diǎn)O,且|AB|=4,求α的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了推進(jìn)分級(jí)診療,實(shí)現(xiàn)“基層首診、雙向轉(zhuǎn)診、急慢分治、上下聯(lián)動(dòng)”的診療模式,某地區(qū)自2016年起全面推行家庭醫(yī)生簽約服務(wù).已知該地區(qū)居民約為2000萬(wàn),從1歲到101歲的居民年齡結(jié)構(gòu)的頻率分布直方圖如圖1所示.為了解各年齡段居民簽約家庭醫(yī)生的情況,現(xiàn)調(diào)查了1000名年滿18周歲的居民,各年齡段被訪者簽約率如圖2所示.
(1)估計(jì)該地區(qū)年齡在71~80歲且已簽約家庭醫(yī)生的居民人數(shù);
(2)若以圖2中年齡在71~80歲居民簽約率作為此地區(qū)該年齡段每個(gè)居民簽約家庭醫(yī)生的概率,則從該地區(qū)年齡在71~80歲居民中隨機(jī)抽取兩人,求這兩人中恰有1人已簽約家庭醫(yī)生的概率;
(3)據(jù)統(tǒng)計(jì),該地區(qū)被訪者的簽約率約為.為把該地區(qū)年滿18周歲居民的簽約率提高到以上,應(yīng)著重提高圖2中哪個(gè)年齡段的簽約率?并結(jié)合數(shù)據(jù)對(duì)你的結(jié)論作出解釋.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),.
(Ⅰ)若,解不等式;
(Ⅱ)若不等式至少有一個(gè)負(fù)數(shù)解,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,直線交橢圓于兩點(diǎn),.
(1)若,且點(diǎn)滿足,證明:點(diǎn)不在橢圓上;
(2)若橢圓的左,右焦點(diǎn)分別為,,直線與線段和橢圓的短軸分別交于兩個(gè)不同點(diǎn),,且,求四邊形面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知△SAB是邊長(zhǎng)為2的等邊三角形,∠ACB=45°,當(dāng)三棱錐S﹣ABC體積最大時(shí),其外接球的表面積為( 。
A.B.C.D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com