【題目】已知函數(shù),.

(Ⅰ)若,解不等式

(Ⅱ)若不等式至少有一個負數(shù)解,求實數(shù)的取值范圍.

【答案】(Ⅰ){x|1≤x≤0}.(Ⅱ)( ,2).

【解析】試題分析】(I)當(dāng),利用零點分段法去絕對值,將不等式變?yōu)榉侄尾坏仁絹砬蟮媒饧?/span>.(II)作出函數(shù)的圖象和函數(shù)的圖象,通過數(shù)形結(jié)合與分類討論的數(shù)學(xué)思想方法求得的取值范圍.

試題解析】

(Ⅰ)若a=1,則不等式+≥3化為2+|x1|≥3.

當(dāng)x≥1時,2+x1≥3,即x+2≤0,(x )2+ ≤0不成立;

當(dāng)x<1時,2x+1≥3,即+x≤0,解得1≤x≤0.

綜上,不等式+≥3的解集為{x|1≤x≤0}.

(Ⅱ)作出y=的圖象如圖所示,當(dāng)a<0時,的圖象如折線所示,

,+xa2=0,若相切,則Δ=1+4(a+2)=0,得a= ,

數(shù)形結(jié)合知,當(dāng)a≤ 時,不等式無負數(shù)解,則 <a<0.

當(dāng)a=0時,滿足>至少有一個負數(shù)解.

當(dāng)a>0時,的圖象如折線所示,

此時當(dāng)a=2時恰好無負數(shù)解,數(shù)形結(jié)合知,

當(dāng)a≥2時,不等式無負數(shù)解,則0<a<2.

綜上所述,若不等式>至少有一個負數(shù)解,

則實數(shù)a的取值范圍是( ,2).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)求的單調(diào)區(qū)間;

(2)若,存在,使得,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三角形中,,是邊長為l的正方形,平面底面,若分別是的中點.

(1)求證:底面;

(2)求幾何體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)).以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為.

(1)寫出直線的普通方程及曲線的直角坐標(biāo)方程;

(2)已知點,點,直線過點且與曲線相交于,兩點,設(shè)線段的中點為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

,求的單調(diào)區(qū)間;

是否存在實數(shù)a,使的最小值為0?若存在,求出a的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一種藥在病人血液中的含量不低于2克時,它才能起到有效治療的作用.已知每服用m)個單位的藥劑,藥劑在血液中的含量y(克)隨著時間x(時)變化的函數(shù)關(guān)系式近似為,其中

1)若病人一次服用3個單位的藥劑,則有效治療時間可達多少小時?

2)若病人第一次服用2個單位的藥劑,4個小時后再服用m個單位的藥劑,要使接下來的2個小時中能夠持續(xù)有效治療,試求m的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下列四個命題:

函數(shù)與函數(shù)表示同一個函數(shù).

奇函數(shù)的圖象一定過直角坐標(biāo)系的坐標(biāo)原點.

函數(shù)的圖象可由的圖象向左平移個單位長度得到.

若函數(shù)的定義域為,則函數(shù)的定義域為

其中正確命題的序號是_________ (填上所有正確命題的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在四棱錐中,平面,點在棱上,且,底面為直角梯形, 分別是的中點.

(1)求證://平面

(2)求直線與平面所成角的正弦值;

(3)求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某蛋糕店制作并銷售一款蛋糕,當(dāng)天每售出個利潤為元,未售出的每個虧損元.根據(jù)以往天的統(tǒng)計資料,得到如下需求量表,元旦這天,此蛋糕店制作了個這種蛋糕.以(單位:個, )表示這天的市場需求量. (單位:元)表示這天售出該蛋糕的利潤.

需求量/個

天數(shù)

10

20

30

25

15

(1)將表示為的函數(shù),根據(jù)上表,求利潤不少于元的概率;

(2)估計這天的平均需求量(同一組數(shù)據(jù)用該區(qū)間的中點值作代表);

(3)元旦這天,該店通過微信展示打分的方式隨機抽取了名市民進行問卷調(diào)查,調(diào)查結(jié)果如下表所示,已知在購買意愿強的市民中,女性的占比為.

購買意愿強

購買意愿弱

合計

女性

28

男性

22

合計

28

22

50

完善上表,并根據(jù)上表,判斷是否有的把握認為市民是否購買這種蛋糕與性別有關(guān)?

附: .

0.05

0.025

0.010

0.005

3.841

5.024

6.635

7.879

查看答案和解析>>

同步練習(xí)冊答案