【題目】已知SAB是邊長(zhǎng)為2的等邊三角形,∠ACB45°,當(dāng)三棱錐SABC體積最大時(shí),其外接球的表面積為( 。

A.B.C.D.

【答案】B

【解析】

作出圖形,由平面CAB與平面SAB垂直且CACB時(shí),三棱SABC的體積最大,并過(guò)兩個(gè)三角形的外心作所在三角形面的垂線,兩垂直交于點(diǎn)O,利用幾何關(guān)系計(jì)算出球O的半徑,然后利用球體表面積公式可得出答案.

由題可知,平面CAB⊥平面SAB,且CACB時(shí),三棱錐SABC體積達(dá)到最大,如圖所示,

則點(diǎn)D,點(diǎn)E分別為△ASB,△ACB的外心,并過(guò)兩個(gè)三角形的外心作所在三角形面的垂線,兩垂直交于點(diǎn)O

∴點(diǎn)O是此三棱錐外接球的球心,AO即為球的半徑.

在△ACB中,AB2,∠ACB45°AEB90°,由正弦定理可知,2AE,∴AEEBEC,

延長(zhǎng)CEAB于點(diǎn)F,則FAB的中點(diǎn),所以點(diǎn)D在直線SF上,

∴四邊形EFDO是矩形,且OE⊥平面ACB,則有OEAE,

又∵OEDFSFAB

OA

S球表面積4πR24π× 2

故選:B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1)若函數(shù)處有最大值,求的值;

2)當(dāng)時(shí),判斷的零點(diǎn)個(gè)數(shù),并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),直線過(guò)原點(diǎn)且傾斜角為,以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系.

1)求曲線和直線的極坐標(biāo)方程;

2)若相交于不同的兩點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,并且在兩種坐標(biāo)系中取相同的長(zhǎng)度單位.若將曲線為參數(shù))上每一點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的(縱坐標(biāo)不變),然后將所得圖象向右平移2個(gè)單位,再向上平移3個(gè)單位得到曲線C.直線l的極坐標(biāo)方程為.

1)求曲線C的普通方程;

2)設(shè)直線l與曲線C交于A,B兩點(diǎn),與x軸交于點(diǎn)P,線段AB的中點(diǎn)為M,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,已知點(diǎn),,動(dòng)點(diǎn)滿足直線MP與直線NP的斜率之積為.記動(dòng)點(diǎn)P的軌跡為曲線C.

1)求曲線C的方程,并說(shuō)明C是什么曲線;

2)過(guò)點(diǎn)作直線與曲線C交于不同的兩點(diǎn)A,B,試問(wèn)在x軸上是否存在定點(diǎn)Q,使得直線QA與直線QB恰好關(guān)于x軸對(duì)稱?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)的導(dǎo)函數(shù).

(Ⅰ)求的單調(diào)區(qū)間;

(Ⅱ)當(dāng)時(shí),證明;

(Ⅲ)設(shè)為函數(shù)在區(qū)間內(nèi)的零點(diǎn),其中,證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,已知橢圓的右焦點(diǎn)為,上頂點(diǎn)為,,點(diǎn)在橢圓.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)動(dòng)直線l與橢圓相交于、兩點(diǎn),與軸相交于點(diǎn),與軸的正半軸相交于點(diǎn)為線段的中點(diǎn),若為定值,請(qǐng)判斷直線l是否過(guò)定點(diǎn),求實(shí)數(shù)的值,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在棱長(zhǎng)為1的正方體中,MN分別是棱的中點(diǎn),P是體對(duì)角線上一點(diǎn),滿足,則平面MNP截正方體所得截面周長(zhǎng)為_______

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在四棱錐中,底面為正方形,.

(1)證明:面;

(2)若與底面所成的角為, ,求二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案