【題目】如圖,四棱錐P﹣ABCD中,底面ABCD為正方形,PD⊥平面ABCD,PD=AB,E,F(xiàn),G,H分別為PC、PD、BC、PA的中點(diǎn).
求證:(1)PA∥平面EFG;
(2)DH⊥平面EFG.
【答案】證明:(1)∵E、G分別是PC、BC的中點(diǎn),
∴EG是△PBC的中位線(xiàn),
∴EG∥PB,
又∵PB平面PAB,EG平面PAB,
∴EG∥平面PAB,
∵E、F分別是PC、PD的中點(diǎn),
∴EF∥CD,
又∵底面ABCD為正方形,
∴CD∥AB,
∴EF∥AB,
又∵AB平面PAB,EF平面PAB,
∴EF∥平面PAB,
又EF∩EG=E,
∴平面EFG∥平面PAB,
∵PA平面PAB,
∴PA∥平面EFG.
(2)∵PD⊥AD,PD=AD,H為的中點(diǎn),
∴DH⊥PA,
∵BA⊥平面PDA,DH平面PDA,
∴DH⊥AB,
∴DH⊥平面PAB,
∴DH⊥PB,
由(1)EF∥AB,EG∥PB,
∴DH⊥EG,DH⊥EF,
∴DH⊥平面EFG.
【解析】(1)根據(jù)面面平行的性質(zhì)推出線(xiàn)面平行;
(2)由題意可證DH⊥PA,DH⊥AB,可證DH⊥平面PAB,從而證明DH⊥PB,由(1)EF∥AB,EG∥PB,從而證明DH⊥EG,DH⊥EF,即可證明DH⊥平面EFG.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解直線(xiàn)與平面平行的判定(平面外一條直線(xiàn)與此平面內(nèi)的一條直線(xiàn)平行,則該直線(xiàn)與此平面平行;簡(jiǎn)記為:線(xiàn)線(xiàn)平行,則線(xiàn)面平行),還要掌握直線(xiàn)與平面垂直的性質(zhì)(垂直于同一個(gè)平面的兩條直線(xiàn)平行)的相關(guān)知識(shí)才是答題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(Ⅰ)當(dāng)時(shí),求函數(shù)
的單調(diào)區(qū)間;
(Ⅱ)當(dāng),
時(shí),證明:
(其中
為自然對(duì)數(shù)的底數(shù)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)=loga(1﹣),其中0<a<1.
(Ⅰ)證明:f(x)是(a,+∞)上的減函數(shù);
(Ⅱ)若f(x)>1,求x的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若直線(xiàn)a上的所有點(diǎn)到兩條直線(xiàn)m、n的距離都相等,則稱(chēng)直線(xiàn)a為“m、n的等距線(xiàn)”.在正方體ABCD﹣A1B1C1D1中,E、F、G、H分別是所在棱中點(diǎn),M、N分別為EH、FG中點(diǎn),則在直線(xiàn)MN,EG,F(xiàn)H,B1D中,是“A1D1、AB的等距線(xiàn)”的條數(shù)為( �。�
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若在
上的最大值為
,求實(shí)數(shù)
的值;
(2)若對(duì)任意,都有
恒成立,求實(shí)數(shù)
的取值范圍;
(3)在(1)的條件下,設(shè),對(duì)任意給定的正實(shí)數(shù)
,曲線(xiàn)
上是否存在兩點(diǎn)
、
,使得
是以
(
為坐標(biāo)原點(diǎn))為直角頂點(diǎn)的直角三角形,且此三角形斜邊中點(diǎn)在
軸上?請(qǐng)說(shuō)明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市春節(jié)期間7家超市的廣告費(fèi)支出(萬(wàn)元)和銷(xiāo)售額
(萬(wàn)元)數(shù)據(jù)如下:
超市 | A | B | C | D | E | F | G |
廣告費(fèi)支出 | 1 | 2 | 4 | 6 | 11 | 13 | 19 |
銷(xiāo)售額 | 19 | 32 | 40 | 44 | 52 | 53 | 54 |
(1)若用線(xiàn)性回歸模型擬合與
的關(guān)系,求
關(guān)于
的線(xiàn)性回歸方程;
(2)用二次函數(shù)回歸模型擬合與
的關(guān)系,可得回歸方程:
,
經(jīng)計(jì)算二次函數(shù)回歸模型和線(xiàn)性回歸模型的分別約為
和
,請(qǐng)用
說(shuō)明選擇哪個(gè)回歸模型更合適,并用此模型預(yù)測(cè)
超市廣告費(fèi)支出為3萬(wàn)元時(shí)的銷(xiāo)售額.
參數(shù)數(shù)據(jù)及公式:,
,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)是數(shù)列
的前
項(xiàng)和,
.
(1)求證:數(shù)列是等差數(shù)列,并求
的通項(xiàng);
(2)設(shè),求數(shù)列
的前
項(xiàng)和
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,直線(xiàn)
的方程為
,曲線(xiàn)
的參數(shù)方程為
(
為參數(shù)).
(1)已知在極坐標(biāo)系(與直角坐標(biāo)系取相同的長(zhǎng)度單位,且以原點(diǎn)
為極點(diǎn),以
軸正半軸為極軸)中,點(diǎn)
的極坐標(biāo)為
,判斷點(diǎn)
與曲線(xiàn)
的位置關(guān)系;
(2)設(shè)點(diǎn)是曲線(xiàn)
上的一個(gè)動(dòng)點(diǎn),求它到直線(xiàn)
的距離的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)(
),
,
(Ⅰ) 試求曲線(xiàn)在點(diǎn)
處的切線(xiàn)l與曲線(xiàn)
的公共點(diǎn)個(gè)數(shù);(Ⅱ) 若函數(shù)
有兩個(gè)極值點(diǎn),求實(shí)數(shù)a的取值范圍.
(附:當(dāng),x趨近于0時(shí),
趨向于
)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com