【題目】(文科)已知四棱錐的底面ABCD為直角梯形,,,,為正三角形.
(1)點M為棱AB上一點,若平面SDM,,求實數(shù)λ的值;
(2)若,求四棱錐的體積.
【答案】(1);(2).
【解析】
(1)由線面平行的性質(zhì)定理得,從而知是中點,可求;
(2)由已知證得所以平面SCD,即得平面平面ABCD.,因此在平面SCD內(nèi)過點S作SE垂直CD交CD的延長線于點E,就有平面ABCD,這就是棱錐的高.由,得,再由,,得,從而有,于是棱錐體積可求.
(1)若平面SDM,平面ABCD,平面平面,
所以,
因為,所以四邊形BCDM為平行四邊形.
又因為,
所以M為AB的中點.
因為,
所以.
(2)因為,,所以,
又,,
所以平面SCD,
又平面ABCD
所以平面平面ABCD.
在平面SCD內(nèi)過點S作SE垂直CD交CD的延長線于點E,
又平面平面,
所以平面ABCD,
連接AE,在和中,
因為,所以,
由題易知,,
所以,
所以,
底面ABCD為直角梯形,,,,
,
四棱錐的體積.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】電視傳媒公司為了解某地區(qū)電視觀眾對某類體育節(jié)目的收視情況,隨機抽取了100名觀眾進行調(diào)查.下面是根據(jù)調(diào)查結(jié)果繪制的觀眾日均收看該體育節(jié)目時間的頻率分布直方圖:
非體育迷 | 體育迷 | 合計 | |
男 | |||
女 | 10 | 55 | |
合計 |
將日均收看該體育節(jié)目時間不低于40分鐘的觀眾稱為“體育迷”.
(1)根據(jù)已知條件完成上面的2×2列聯(lián)表,若按95%的可靠性要求,并據(jù)此資料,你是否認(rèn)為“體育迷”與性別有關(guān)?
(2)現(xiàn)在從該地區(qū)非體育迷的電視觀眾中,采用分層抽樣方法選取5名觀眾,求從這5名觀眾選取兩人進行訪談,被抽取的2名觀眾中至少有一名女生的概率.
附:
P(K2≥k) | 0.05 | 0.01 |
k | 3.841 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】高三學(xué)生為了迎接高考,要經(jīng)常進行模擬考試,鍛煉應(yīng)試能力,某學(xué)生從升入高三到高考要參加10次模擬考試,下面是高三第一學(xué)期某學(xué)生參加5次模擬考試的數(shù)學(xué)成績表:
模擬考試第x次 | 1 | 2 | 3 | 4 | 5 |
考試成績y分 | 90 | 100 | 105 | 105 | 100 |
(1)已知該考生的模擬考試成績y與模擬考試的次數(shù)x滿足回歸直線方程,若高考看作第11次模擬考試,試估計該考生的高考數(shù)學(xué)成績;
(2)把這5次模擬考試的數(shù)學(xué)成績單放在5個相同的信封中,從中隨機抽取3份試卷的成績單進行研究,設(shè)抽取考試成績不等于平均值的個數(shù)為,求出的分布列與數(shù)學(xué)期望.
參考公式:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐中,,,,為正三角形,且.
(1)證明:直線平面;
(2)若四棱錐的體積為,是線段的中點,求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的周期為,圖象的一個對稱中心為.將函數(shù)圖象上所有點的橫坐標(biāo)伸長到原來的倍(縱坐標(biāo)不變),再將所得到的圖象向右平移個單位長度后得到函數(shù)的圖象.
(1)求函數(shù)與的解析式;
(2)(理)求證:存在,使得,,能按照某種順序成等差數(shù)列.
(3)(文)定義:當(dāng)函數(shù)取得最值時,函數(shù)圖像上對應(yīng)的點稱為函數(shù)的最值點,如果函數(shù)的圖像上至少有一個最大值點和一個最小值點在圓的內(nèi)部或圓周上,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點在上,以為切點的的切線的斜率為,過外一點(不在軸上)作的切線、,點、為切點,作平行于的切線(切點為),點、分別是與、的交點(如圖):
(1)用、的縱坐標(biāo)、表示直線的斜率;
(2)若直線與的交點為,證明是的中點;
(3)設(shè)三角形面積為,若將由過外一點的兩條切線及第三條切線(平行于兩切線切點的連線)圍成的三角形叫做“切線三角形”,如,再由、作“切線三角形”,并依這樣的方法不斷作切線三角形……,試?yán)?/span>“切線三角形”的面積和計算由拋物線及所圍成的陰影部分的面積
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在正方體中, 、分別是、的中點.
(1)求證:四邊形是菱形;
(2)求異面直線與所成角的大小 (結(jié)果用反三角函數(shù)值表示) .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年10月18日-27日,第七屆世界軍人運動會在湖北武漢舉辦,中國代表團共獲得133金64銀42銅,共239枚獎牌.為了調(diào)查各國參賽人員對主辦方的滿意程度,研究人員隨機抽取了500名參賽運動員進行調(diào)查,所得數(shù)據(jù)如下所示,現(xiàn)有如下說法:①在參與調(diào)查的500名運動員中任取1人,抽到對主辦方表示滿意的男性運動員的概率為;②在犯錯誤的概率不超過1%的前提下可以認(rèn)為“是否對主辦方表示滿意與運動員的性別有關(guān)”;③沒有99.9%的把握認(rèn)為“是否對主辦方表示滿意與運動員的性別有關(guān)”;則正確命題的個數(shù)為( )附:
男性運動員 | 女性運動員 | |||||
對主辦方表示滿意 | 200 | 220 | ||||
對主辦方表示不滿意 | 50 | 30 | ||||
0.100 | 0.050 | 0.010 | 0.001 | |||
k | 2.706 | 3.841 | 6.635 | 10.828 | ||
A.0B.1C.2D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時,討論函數(shù)的單調(diào)性;
(2)若不等式對于任意成立,求正實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com