8.在平面直角坐標(biāo)系xOy中,圓x2+y2=16的切線與x軸、y軸的正半軸分別交于A、B兩點(diǎn),則△AOB面積的最小值為16.

分析 用截距式設(shè)出切線方程,由圓心到直線的距離等于半徑以及基本不等式可得ab=4$\sqrt{{a}^{2}+^{2}}$≤$\frac{1}{2}$(a2+b2),令t=$\sqrt{{a}^{2}+^{2}}$,可得t的最小值為8,進(jìn)而得到答案.

解答 解:設(shè)切線方程為bx+ay-ab=0(a>0,b>0),
由圓心到直線的距離等于半徑得$\frac{|ab|}{\sqrt{{a}^{2}+^{2}}}$=4,
所以ab=4$\sqrt{{a}^{2}+^{2}}$≤$\frac{1}{2}$(a2+b2),令t=$\sqrt{{a}^{2}+^{2}}$,
則有t2-8t≥0,t≥8,故t的最小值為8.
∴t=|AB|的最小值為8,
∴△AOB面積的最小值為$\frac{1}{2}×4×8$=16.
故答案為:16.

點(diǎn)評(píng) 本題考查點(diǎn)到直線的距離公式和基本不等式的應(yīng)用,體現(xiàn)了換元的思想(在換元時(shí)應(yīng)該注意等價(jià)換元).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知函數(shù)f(x)=$\frac{|x+1|-|x-1|}{2}$,函數(shù)g(x)=ax2-2x+1.若函數(shù)y=f(x)-g(x)恰好有2個(gè)不同的零點(diǎn),則實(shí)數(shù)a的取值范圍為(-∞,0)∪(0,$\frac{9}{4}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知傾斜角為α的直線l與直線x+2y-3=0垂直,則cos($\frac{2015π}{2}$-2α)的值為( 。
A.$\frac{4}{5}$B.-$\frac{4}{5}$C.2D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知拋物線y2=4x,作斜率為1的直線l交拋物線于A,B兩點(diǎn),交x軸于點(diǎn)M,弦AB的中點(diǎn)為P
(1)若M(2,0),求以線段AB為直徑的圓的方程;
(2)設(shè)M(m,0),若點(diǎn)P滿足$\frac{1}{{|{AM}|}}+\frac{1}{{|{BM}|}}=\frac{1}{{|{PM}|}}$,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=x|x+m|-4,m∈R
(1)若g(x)=f(x)+4為奇函數(shù),求實(shí)數(shù)m的值;
(2)當(dāng)m=-3時(shí),求函數(shù)f(x)在x∈[2,4]上的值域;
(3)若f(x)<0對(duì)x∈(0,1]恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.函數(shù)y=log2(-x2-4x+5)的單調(diào)遞增區(qū)間是(-5,-2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.函數(shù)y=f(x)的定義域是(-1,1),則函數(shù)f(2x-1)的定義域?yàn)椋ā 。?table class="qanwser">A.(0,1)B.(-1,1)C.(-3,1)D.(-1,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.高一某班共有學(xué)生43人,據(jù)統(tǒng)計(jì)原來每人每年用于購(gòu)買飲料的平均支出是120元.若該班全體學(xué)生改飲某品牌的桶裝純凈水,經(jīng)測(cè)算和市場(chǎng)調(diào)查,其年總費(fèi)用由兩部分組成,一部分是購(gòu)買純凈水的費(fèi)用,另一部分是其它費(fèi)用260元,其中,純凈水的銷售價(jià)x(元/桶)與年購(gòu)買總量y(桶)之間滿足如圖直線所示關(guān)系.
(1)求y關(guān)于x的函數(shù)關(guān)系式,并寫出函數(shù)的定義域;
(2)若該班每年需要純凈水360桶,請(qǐng)你根據(jù)提供的信息比較,該班全體學(xué)生改飲桶裝純凈水的年總費(fèi)用與該班全體學(xué)生購(gòu)買飲料的年總費(fèi)用,哪一個(gè)更少?說明你的理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知定義在R上的函數(shù)f(x)=$\left\{\begin{array}{l}{x^2}+2,x∈[0,1)\\ 2-{x^2},x∈[-1,0)\end{array}$且f(x+2)=f(x).若方程f(x)-kx-2=0有三個(gè)不相等的實(shí)數(shù)根,則實(shí)數(shù)k的取值范圍是( 。
A.$(\frac{1}{3},1)$B.$(-\frac{1}{3},-\frac{1}{4})$C.$(\frac{1}{3},1)∪(-1,-\frac{1}{3})$D.$(-\frac{1}{3},-\frac{1}{4})∪(\frac{1}{4},\frac{1}{3})$

查看答案和解析>>

同步練習(xí)冊(cè)答案