某高中畢業(yè)學(xué)年,在高校自主招生期間,把學(xué)生的平時成績按“百分制”折算,排出前n名學(xué)生,并對這n名學(xué)生按成績分組,第一組[75,80),第二組[80,85),第三組[85,90),第四組[90,95),第五組[95,100],如圖為頻率分布直方圖的一部分,其中第五組、第一組、第四組、第二組、第三組的人數(shù)依次成等差數(shù)列,且第四組的人數(shù)為60.
(Ⅰ)請在圖中補(bǔ)全頻率分布直方圖;
(Ⅱ)若Q大學(xué)決定在成績高的第3,4,5組中用分層抽樣的方法抽取6名學(xué)生進(jìn)行面試.
①若Q大學(xué)本次面試中有B、C、D三位考官,規(guī)定獲得兩位考官的認(rèn)可即面試成功,且面試結(jié)果相互獨立,已知甲同學(xué)已經(jīng)被抽中,并且通過這三位考官面試的概率依次為
1
2
、
1
3
,
1
5
,求甲同學(xué)面試成功的概率;
②若Q大學(xué)決定在這6名學(xué)生中隨機(jī)抽取3名學(xué)生接受考官B的面試,第3組中有ξ名學(xué)生被考官B面試,求ξ的分布列和數(shù)學(xué)期望.
考點:離散型隨機(jī)變量的期望與方差,分層抽樣方法,頻率分布直方圖
專題:概率與統(tǒng)計
分析:(Ⅰ)由第四組的人數(shù)能求出總?cè)藬?shù),由此能補(bǔ)全頻率分布直方圖.
(Ⅱ)①設(shè)事件A=甲同學(xué)面試成功,由此利用獨立事件概率公式能求出甲同學(xué)面試成功的概率.
②由題意得,ξ=0,1,2,3,分別求出其概率,由此能求出ξ的分布列和數(shù)學(xué)期望.
解答: 解:(Ⅰ)∵第四組的人數(shù)為60,
∴總?cè)藬?shù)為:5×60=300,

由直方圖可知,第五組人數(shù)為:0.02×5×300=30人,
60-30
2
=15
為公差,
∴第一組人數(shù)為:45人,第二組人數(shù)為:75人,第三組人數(shù)為:90人(4分)
(Ⅱ)①設(shè)事件A=甲同學(xué)面試成功,
則P(A)=
1
2
×
1
3
×
4
5
+
1
2
×
2
3
×
1
5
+
1
2
×
1
3
×
1
5
+
1
2
×
1
3
×
1
5
=
4
15
…..(8分)
②由題意得,ξ=0,1,2,3,
P(ξ=0)=
C
0
3
C
3
3
C
3
6
=
1
20
,
P(ξ=1)=
C
1
3
C
2
3
C
3
6
=
9
20
,
P(ξ=2)=
C
2
3
C
1
3
C
3
6
=
9
20
,
P(ξ=3)=
C
3
3
C
0
3
C
3
6
=
1
20

分布列為:
ξ 0 1 2 3
P
1
20
9
20
9
20
1
20
E(ξ)=0×
1
20
+1×
9
20
+2×
9
20
+3×
1
20
=
3
2
…..(12分)
點評:本題考查頻率分布直方圖的應(yīng)用,考查離散型隨機(jī)變量的分布列和數(shù)學(xué)期望,是中檔題,是歷年高考的必考題型.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)A、B、C、D是空間四個不同的點,在下列命題中,不正確的是(  )
A、若直線AB與CD沒有公共點,則AB∥CD
B、若AC與BD共面,則AD與BC共面
C、若AC與BD是異面直線,則AD與BC是異面直線
D、若AB=AC,DB=DC,則AD⊥BC

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,如果a,b,c分別是角A,B,C的對邊,設(shè)命題p:(a2+b2)sin(A-B)=(a2-b2)sin(A+B);命題q:△ABC為直角三角形,那么命題p是命題q的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某校從參加高一年級期末考試的學(xué)生中抽出60名學(xué)生,將其成績(均為整數(shù))分成六段[40,50),[50,60),[90,100]后畫出如下部分頻率頒布直方圖,觀察圖形的信息,回答下列問題:
(Ⅰ)求第四小組的頻率,補(bǔ)全這個頻率分布直方圖,并估計這次考試的及格率(60分及以上為及格);
(Ⅱ)若將頻率袖為概率,從這個學(xué)校的高一學(xué)生中抽取3個學(xué)生(看作有放回的抽樣),求其成績在80分至100分(包括80分)的學(xué)生數(shù)X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

生產(chǎn)A,B兩種元件,其質(zhì)量按測試指標(biāo)劃分為:指標(biāo)大于或等于82為正品,小于82為次品,現(xiàn)隨機(jī)抽取這兩種元件各100件進(jìn)行檢測,檢測結(jié)果統(tǒng)計如下:
測試指標(biāo) [70,76) [76,82) [82,88) [88,94) [94,100]
元件A 8 12 40 32 8
元件B 7 18 40 29 6
(Ⅰ)試分別估計元件A、元件B為正品的概率;
(Ⅱ)生產(chǎn)一件元件A,若是正品可盈利50元,若是次品則虧損10元;生產(chǎn)一件元件B,若是正品可盈利100元,若是次品則虧損20元,在(Ⅰ)的前提下:
(i)求生產(chǎn)5件元件B所獲得的利潤不少于300元的概率;
(ii)記X為生產(chǎn)1件元件A和1件元件B所得的總利潤,求隨機(jī)變量X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在棱長為a的正方體ABCD-A1B1C1D1中,點E是棱D1D的中點,點F在棱B1B上,且滿足B1F=2FB.
(1)求證:EF⊥A1C1
(2)在棱C1C上確定一點G,使A,E,G,F(xiàn)四點共面,并求此時C1G的長;
(3)求平面AEF與平面ABCD所成二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a>0,b>0,且a2+b2=
9
2
,若a+b≤m恒成立,
(Ⅰ)求m的最小值;
(Ⅱ)若2|x-1|+|x|≥a+b對任意的a,b恒成立,求實數(shù)x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的右焦點為(
2
,0),離心率為
6
3

(Ⅰ)求橢圓C的方程;
(Ⅱ)若直線l與橢圓C相交于A,B兩點,且以AB為直徑的圓經(jīng)過原點O,求證:點O到直線AB的距離為定值;
(Ⅲ)在(Ⅱ)的條件下,求△OAB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
2,x>0
0,x=0
-2,x<0
,下列敘述
(1)f(x)是奇函數(shù);
(2)y=xf(x)是奇函數(shù);
(3)(x+1)f(x)-4<0的解為-3<x<1
(4)xf(x+1)<0的解為-1<x<1;其中正確的是
 
(填序號).

查看答案和解析>>

同步練習(xí)冊答案