某校從參加高一年級期末考試的學(xué)生中抽出60名學(xué)生,將其成績(均為整數(shù))分成六段[40,50),[50,60),[90,100]后畫出如下部分頻率頒布直方圖,觀察圖形的信息,回答下列問題:
(Ⅰ)求第四小組的頻率,補全這個頻率分布直方圖,并估計這次考試的及格率(60分及以上為及格);
(Ⅱ)若將頻率袖為概率,從這個學(xué)校的高一學(xué)生中抽取3個學(xué)生(看作有放回的抽樣),求其成績在80分至100分(包括80分)的學(xué)生數(shù)X的分布列和數(shù)學(xué)期望.
考點:離散型隨機變量的期望與方差,頻率分布直方圖
專題:概率與統(tǒng)計
分析:(Ⅰ)利用頻率分布直方圖能求出第四組的頻率,由此能補齊直方圖,能求出抽樣學(xué)生成績的及格率.
(Ⅱ)由題間,知每抽一名學(xué)生,抽到80~100分學(xué)生的概率為0.3,且x~B(3,0,3),由此能求出X的分布列和數(shù)學(xué)期望.
解答: 解:(Ⅰ)∵各組的頻率和等于1,
∴第四組的頻率f4=1-(0.025+0.015×2+0.01+0.005)×10=0.3,
直方圖如右圖.
縱坐標(biāo)是0.03.
依題意,60分及以上的分?jǐn)?shù)所在的第三、四、五、六組,
頻率和為(0.015+0.03+0.025+0.005)×10=0.75,
∴抽樣學(xué)生成績的及格率是75%.
(Ⅱ)由題間,知每抽一名學(xué)生,抽到80~100分學(xué)生的概率o為0.3,且x~B(3,0,3),
∴P(X=0)=C
C
0
3
C
3
7
=0.343,
P(ξ=1)=
C
1
3
×0.3×0.72
=0.441,
P(ξ=2)=
C
2
3
×0.32×0.7
=0.189,
P(ξ=3)=
C
3
3
×0.33
=0.027,
∴隨機變量X的分布列為:
 X  0
 P  0.343  0.441 0.189  0.027 
∴EX=3×0.3=0.9.
點評:本題考查頻率分布直方圖的應(yīng)用,考查離散型隨機變量的分布列和數(shù)學(xué)期望,是中檔題,在歷年高考中都是必考題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下面的莖葉圖表示柜臺記錄的一天銷售額情況(單位:元),則銷售額中的中位數(shù)是(  )
A、30.5B、31.5
C、31D、32

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

“非空集合M的元素都是集合P的元素”是假命題,則以下四個命題:
(1)M的元素都不是P的元素;
(2)M中有不屬于P元素;
(3)M中有P的元素;
(4)M的元素不都是P的元素,
其中真命題的個數(shù)有(  )
A、1個B、2個C、3個D、4個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若復(fù)數(shù)z滿足z=i(2+4i)(i是虛數(shù)單位),則在復(fù)平面內(nèi),z對應(yīng)的點的坐標(biāo)是( 。
A、(-4,2)
B、(-2,4)
C、(2,4)
D、(4,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sin2x+
3
cosxsinx-
1
2
,x∈R
(1)求函數(shù)f(x)的最小正周期
(2)在△ABC中,角A,B,C的對邊分別為a,b,c,且滿足2bcosA=2c-
3
a,求f(B)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

f(x)定義域為(0,+∞),且滿足f(x)-2x•f(
1
 x
)+3x2=0,求f(x)=?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某高中畢業(yè)學(xué)年,在高校自主招生期間,把學(xué)生的平時成績按“百分制”折算,排出前n名學(xué)生,并對這n名學(xué)生按成績分組,第一組[75,80),第二組[80,85),第三組[85,90),第四組[90,95),第五組[95,100],如圖為頻率分布直方圖的一部分,其中第五組、第一組、第四組、第二組、第三組的人數(shù)依次成等差數(shù)列,且第四組的人數(shù)為60.
(Ⅰ)請在圖中補全頻率分布直方圖;
(Ⅱ)若Q大學(xué)決定在成績高的第3,4,5組中用分層抽樣的方法抽取6名學(xué)生進行面試.
①若Q大學(xué)本次面試中有B、C、D三位考官,規(guī)定獲得兩位考官的認(rèn)可即面試成功,且面試結(jié)果相互獨立,已知甲同學(xué)已經(jīng)被抽中,并且通過這三位考官面試的概率依次為
1
2
、
1
3
,
1
5
,求甲同學(xué)面試成功的概率;
②若Q大學(xué)決定在這6名學(xué)生中隨機抽取3名學(xué)生接受考官B的面試,第3組中有ξ名學(xué)生被考官B面試,求ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A,B,C是△ABC的三個內(nèi)角,且滿足sin2A-sin2B+sin2C=
2
sinAsinC

(Ⅰ)求角B;
(Ⅱ)若sinA=
3
5
,求cosC的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定積分
1
-1
|x|dx=
 

查看答案和解析>>

同步練習(xí)冊答案