求值:
(a+b)2
+|b-a|+|
3a3
-
3b3
|=
 
考點:根式與分?jǐn)?shù)指數(shù)冪的互化及其化簡運算
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:利用絕對值的性質(zhì)分類討論,能求出結(jié)果.
解答: 解:
(a+b)2
+|b-a|+|
3a3
-
3b3
|
=|a+b|+|b-a|+|a-b|.
若a>b,a+b>0,則原式=a+b+a-b+a-b=3a-b;
若b>a,a+b>0則原式=a+b+b-a+b-a=3b-a;
若a>b,a+b<0,則原式=-a-b+a-b+a-b=a-3b;
若b>a,a+b<0,則原式=-a-b+b-a+b-a=b-3a.
故答案為:3a-b或3b-a或a-3b或b-3a.
點評:本題考查根式和分?jǐn)?shù)指數(shù)冪的化簡求值,是基礎(chǔ)題,解題時要注意絕對值性質(zhì)的合理運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若對于?x∈R使得丨x-2a丨+x>3恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

化簡:
AB
-
AC
-
DB
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

向量
OA
=(cosa,sina),向量
OB
=(2+sina,2-cosa),則向量|
AB
|的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

1+sin(a-2π)•sin(π+a)-2cos2(-a)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}的各項均為正數(shù),前n項和為Sn,對于任意的n∈N+,an,Sn,an2成等差數(shù)列,設(shè)數(shù)列{bn}的前n項和為Tn,且bn=
(lnx)n
an2
,若對任意的實數(shù)x∈(1,e](e是自然對數(shù)的底)和任意正整數(shù)n,總有Tn<r(r∈N+),則r的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在△ABC中,∠ACB=30°,D為AC上一點,∠ABD=30°,延長BD至E,連接AE、CE,若∠ECB=2∠EBC,則線段AE與CE的數(shù)量關(guān)系為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}的公差d>0,前n項和為Sn,等比數(shù)列{bn}的公比q是正整數(shù),前n項和為Tn,若a1=d,b1=d2,且
a12+a22+a32
b1+b2+b3
是正整數(shù),則
S92
T8 
等于(  )
A、
45
17
B、
135
17
C、
90
17
D、
270
17

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A(-3,0)、B(0,2),O為坐標(biāo)原點,點C在∠AOB內(nèi),且∠AOC=45°,設(shè)
OC
OA
+(1-λ)
OB
,(λ∈R)則λ的值為( 。
A、
1
5
B、
1
3
C、
2
5
D、
2
3

查看答案和解析>>

同步練習(xí)冊答案