【題目】已知函數(shù)且點在函數(shù)的圖象上.

1)求函數(shù)的解析式,并在圖中的直角坐標(biāo)系中畫出函數(shù)的圖象;

2)求不等式的解集;

3)若方程有兩個不相等的實數(shù)根,求實數(shù)的取值范圍.

【答案】(1),圖像見解析(2)(3)

【解析】

1)將點代入,即可求解的值,進而求得函數(shù)的解析式,畫出函數(shù)fx)的圖象.

2)分為兩種情況分別求解不等式,再取并集即可得不等式的解集.

3)欲求滿足方程有兩個不相等的實數(shù)根的取值范圍,可使函數(shù)有兩個不同的交點,畫出二者的圖象即可判斷出實數(shù)的取值范圍.

解:(1)由的圖象經(jīng)過點,

可得,,解得,

,

函數(shù)的圖象如下圖:

2即為,

,

則解集為;

3有兩個不相等的實數(shù)根,

即有的圖象和直線有兩個交點,

由圖象可得,,

可得的取值范圍是

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,圓的普通方程為. 在以坐標(biāo)原點為極點,軸正半軸為極軸的極坐標(biāo)系中,直線的極坐標(biāo)方程為 .

(Ⅰ) 寫出圓 的參數(shù)方程和直線的直角坐標(biāo)方程;

( Ⅱ ) 設(shè)直線軸和軸的交點分別為,為圓上的任意一點,求的取值范圍.

【答案】(1);.

(2).

【解析】試題分析】(I)利用圓心和半徑,寫出圓的參數(shù)方程,將圓的極坐標(biāo)方程展開后化簡得直角坐標(biāo)方程.(II)求得兩點的坐標(biāo), 設(shè)點,代入向量,利用三角函數(shù)的值域來求得取值范圍.

試題解析】

(Ⅰ)圓的參數(shù)方程為為參數(shù)).

直線的直角坐標(biāo)方程為.

(Ⅱ)由直線的方程可得點,點.

設(shè)點,則 .

.

由(Ⅰ)知,則 .

因為,所以.

型】解答
結(jié)束】
23

【題目】選修4-5:不等式選講

已知函數(shù), .

(Ⅰ)若對于任意 都滿足,求的值;

(Ⅱ)若存在,使得成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司生產(chǎn)一種電子儀器的固定成本為20000元,每生產(chǎn)一臺儀器需增加投入100元,已知總收益滿足函數(shù): ,其中是儀器的月產(chǎn)量.(注:總收益=總成本+利潤)

(1)將利潤表示為月產(chǎn)量的函數(shù);

(2)當(dāng)月產(chǎn)量為何值時,公司所獲利潤最大?最大利潤為多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,定長為3的線段兩端點分別在軸,軸上滑動,在線段上,且.

(1)求點的軌跡的方程;

(2)設(shè)點是軌跡上一點,從原點向圓作兩條切線分別與軌跡交于點,直線,的斜率分別記為.

①求證:;

②求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是定義在區(qū)間內(nèi)的單調(diào)函數(shù),且對任意,都有,設(shè)的導(dǎo)函數(shù),,則函數(shù)的零點個數(shù)為( )

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠生產(chǎn)甲、乙兩種產(chǎn)品所得的利潤分別為(萬元),事先根據(jù)相關(guān)資料得出它們與投入資金(萬元)的數(shù)據(jù)分別如下表和圖所示:其中已知甲的利潤模型為,乙的利潤模型為.(為參數(shù),且.

1)請根據(jù)下表與圖中數(shù)據(jù),分別求出甲、乙兩種產(chǎn)品所得的利潤與投入資金(萬元)的函數(shù)模型

2)今將萬資金投入生產(chǎn)甲、乙兩種產(chǎn)品,并要求對甲、乙兩種產(chǎn)品的投入資金都不低于萬元.設(shè)對乙種產(chǎn)品投入資金(萬元),并設(shè)總利潤為(萬元),如何分配投入資金,才能使總利潤最大?并求出最大總利潤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如下圖,在平面直角坐標(biāo)系xOy中,點A(0,3),直線ly=2x-4.設(shè)圓C的半徑為1,圓心在l.

(1)若圓心C也在直線yx-1上,過點A作圓C的切線,求切線的方程;

(2)若圓C上存在點M,使MA=2MO,求圓心C的橫坐標(biāo)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本題滿分12分)

已知橢圓的中心在原點,焦點在軸上,橢圓上的點到焦點的距離的最

小值為,離心率為

(I)求橢圓的方程;

)過點(1,0)作直線、兩點,試問:在軸上是否存在一個定點,使為定值?若存在,求出這個定點的坐標(biāo);若不存在,請說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓的圓心在拋物線上,圓過原點且與拋物線的準(zhǔn)線相切.

(1)求該拋物線的方程;

(2)過拋物線焦點的直線交拋物線于, 兩點,分別在點, 處作拋物線的兩條切線交于點,求三角形面積的最小值及此時直線的方程.

查看答案和解析>>

同步練習(xí)冊答案