【題目】選修4-4:坐標系與參數(shù)方程

在直角坐標系中,圓的普通方程為. 在以坐標原點為極點,軸正半軸為極軸的極坐標系中,直線的極坐標方程為 .

(Ⅰ) 寫出圓 的參數(shù)方程和直線的直角坐標方程;

( Ⅱ ) 設直線軸和軸的交點分別為,為圓上的任意一點,求的取值范圍.

【答案】(1);.

(2).

【解析】試題分析】(I)利用圓心和半徑,寫出圓的參數(shù)方程,將圓的極坐標方程展開后化簡得直角坐標方程.(II)求得兩點的坐標, 設點,代入向量,利用三角函數(shù)的值域來求得取值范圍.

試題解析】

(Ⅰ)圓的參數(shù)方程為為參數(shù)).

直線的直角坐標方程為.

(Ⅱ)由直線的方程可得點,點.

設點,則 .

.

由(Ⅰ)知,則 .

因為,所以.

型】解答
束】
23

【題目】選修4-5:不等式選講

已知函數(shù) .

(Ⅰ)若對于任意, 都滿足,求的值;

(Ⅱ)若存在,使得成立,求實數(shù)的取值范圍.

【答案】(Ⅰ).(Ⅱ).

【解析】試題分析】(I) 因為, ,所以的圖象關于對稱.而的圖象關于對稱,所以,所以.(II)將原不等式等價變形為,將左邊構造成函數(shù),利用分類討論法求得函數(shù)的最小值,由此求得的取值范圍.

試題解析】

(Ⅰ)因為, ,所以的圖象關于對稱.

的圖象關于對稱,所以,所以.

(Ⅱ)等價于.

,

.

由題意,即.

時, , ,所以

時, , ,所以,

綜上.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐 中, 平面 ,底面是等腰梯形,且 ,其中 .

1)證明:平面 平面 .

2)求點 到平面 的距離。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓經(jīng)過橢圓 的兩個焦點和兩個頂點,點, 是橢圓上的兩點,它們在軸兩側,且的平分線在軸上, .

(Ⅰ)求橢圓的方程;

(Ⅱ)證明:直線過定點.

【答案】(Ⅰ).(Ⅱ)直線過定點.

【解析】試題分析】(I)根據(jù)圓的半徑和已知 ,,由此求得橢圓方程.(II)設出直線的方程,聯(lián)立直線方程與橢圓方程,寫出韋達定理,寫出的斜率并相加,由此求得直線過定點.

試題解析】

(Ⅰ)圓軸交點即為橢圓的焦點,圓軸交點即為橢圓的上下兩頂點,所以, .從而,

因此橢圓的方程為: .

(Ⅱ)設直線的方程為.

,消去.

,則, .

直線的斜率

直線的斜率 .

.

的平分線在軸上,得.又因為,所以,

所以.

因此,直線過定點.

[點睛]本小題主要考查橢圓方程的求解,考查圓與橢圓的位置關系,考查直線與圓錐曲線位置關系. 涉及直線與橢圓的基本題型有:(1)位置關系的判斷.(2)弦長、弦中點問題.(3)軌跡問題.(4)定值、最值及參數(shù)范圍問題.(5)存在性問題.常用思想方法和技巧有:(1)設而不求.(2)坐標法.(3)根與系數(shù)關系.

型】解答
束】
21

【題目】已知函數(shù),且).

(Ⅰ)求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)求函數(shù)上的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐中, 為等邊三角形,且平面平面, , , .

(Ⅰ)證明: ;

(Ⅱ)若棱錐的體積為,求該四棱錐的側面積.

【答案】(Ⅰ)證明見解析;(Ⅱ) .

【解析】試題分析】(I)的中點為,連接,.利用等腰三角形的性質(zhì)和矩形的性質(zhì)可證得,由此證得平面,故,故.(II) 可知是棱錐的高,利用體積公式求得,利用勾股定理和等腰三角形的性質(zhì)求得的值,進而求得面積.

試題解析】

證明:(Ⅰ)取的中點為,連接,

為等邊三角形,∴.

底面中,可得四邊形為矩形,∴,

,∴平面

平面,∴.

,所以.

(Ⅱ)由面,

平面,所以為棱錐的高,

,知,

,

.

由(Ⅰ)知,,∴.

.

,可知平面,∴

因此.

,,

的中點,連結,則,,

.

所以棱錐的側面積為.

型】解答
束】
20

【題目】已知圓經(jīng)過橢圓 的兩個焦點和兩個頂點,點, , 是橢圓上的兩點,它們在軸兩側,且的平分線在軸上, .

(Ⅰ)求橢圓的方程;

(Ⅱ)證明:直線過定點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),且).

(Ⅰ)求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)求函數(shù)上的最大值.

【答案】(Ⅰ)的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為.(Ⅱ)當時, ;當時, .

【解析】試題分析】(I)利用的二階導數(shù)來研究求得函數(shù)的單調(diào)區(qū)間.(II) 由(Ⅰ)得上單調(diào)遞減,在上單調(diào)遞增,由此可知.利用導數(shù)和對分類討論求得函數(shù)在不同取值時的最大值.

試題解析】

(Ⅰ),

,則.

, ,∴上單調(diào)遞增,

從而得上單調(diào)遞增,又∵

∴當時, ,當時, ,

因此, 的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為.

(Ⅱ)由(Ⅰ)得上單調(diào)遞減,在上單調(diào)遞增,

由此可知.

,

.

,

.

∵當時, ,∴上單調(diào)遞增.

又∵,∴當時, ;當時, .

①當時, ,即,這時, ;

②當時, ,即,這時, .

綜上, 上的最大值為:當時, ;

時, .

[點睛]本小題主要考查函數(shù)的單調(diào)性,考查利用導數(shù)求最大值. 與函數(shù)零點有關的參數(shù)范圍問題,往往利用導數(shù)研究函數(shù)的單調(diào)區(qū)間和極值點,并結合特殊點,從而判斷函數(shù)的大致圖像,討論其圖象與軸的位置關系,進而確定參數(shù)的取值范圍;或通過對方程等價變形轉化為兩個函數(shù)圖象的交點問題.

型】解答
束】
22

【題目】選修4-4:坐標系與參數(shù)方程

在直角坐標系中,圓的普通方程為. 在以坐標原點為極點,軸正半軸為極軸的極坐標系中,直線的極坐標方程為 .

(Ⅰ) 寫出圓 的參數(shù)方程和直線的直角坐標方程;

( Ⅱ ) 設直線軸和軸的交點分別為,為圓上的任意一點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】 據(jù)觀測統(tǒng)計,某濕地公園某種珍稀鳥類的現(xiàn)有個數(shù)約只,并以平均每年的速度增加.

(1)求兩年后這種珍稀鳥類的大約個數(shù);

(2)寫出(珍稀鳥類的個數(shù))關于(經(jīng)過的年數(shù))的函數(shù)關系式;

(3)約經(jīng)過多少年以后,這種鳥類的個數(shù)達到現(xiàn)有個數(shù)的倍或以上?(結果為整數(shù))(參考數(shù)據(jù):,)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)對任意的都有,且

1)求函數(shù)的解析式;

2)設函數(shù)

①若存在實數(shù),,使得在區(qū)間上為單調(diào)函數(shù),且取值范圍也為,求的取值范圍;

②若函數(shù)的零點都是函數(shù)的零點,求的所有零點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在某服裝商場,當某一季節(jié)即將來臨時,季節(jié)性服裝的價格呈現(xiàn)上升趨勢.設一種服裝原定價為每件70元,并且每周(7天)每件漲價6元,5周后開始保持每件100元的價格平穩(wěn)銷售;10周后,當季節(jié)即將過去時,平均每周每件降價6元,直到16周末,該服裝不再銷售.

(1)試建立每件的銷售價格(單位:元)與周次之間的函數(shù)解析式;

(2)若此服裝每件每周進價(單位:元)與周次之間的關系為,試問該服裝第幾周的每件銷售利潤最大?(每件銷售利潤=每件銷售價格-每件進價)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)且點在函數(shù)的圖象上.

1)求函數(shù)的解析式,并在圖中的直角坐標系中畫出函數(shù)的圖象;

2)求不等式的解集;

3)若方程有兩個不相等的實數(shù)根,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案