【題目】在平面直角坐標(biāo)系xOy中,以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸,建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為

1)求曲線C的普通方程;

2)直線l的參數(shù)方程為,(t為參數(shù)),直線lx軸交于點(diǎn)F,與曲線C的交點(diǎn)為A,B,當(dāng)取最小值時(shí),求直線l的直角坐標(biāo)方程.

【答案】12

【解析】

1)由二倍角公式的逆運(yùn)用化簡(jiǎn)已知方程,再由極坐標(biāo)方程與普通方程間的關(guān)系化為普通方程;

2)由直線l的參數(shù)方程可知其與x軸交于點(diǎn),即為拋物線C的焦點(diǎn),從而由參數(shù)方程中t的幾何意義可知,為直線l的參數(shù)方程與拋物線C的普通方程聯(lián)立之后的方程的兩根,即可表示,進(jìn)而由三角函數(shù)求最值,得其答案.

1)由題意得,

,得,

,

,即曲線C的普通方程為

2)由題意可知,直線lx軸交于點(diǎn),即為拋物線C的焦點(diǎn),

,

將直線l的參數(shù)方程,代入C的普通方程中,

整理得,

由題意得,根據(jù)根與系數(shù)的關(guān)系得,

,

(當(dāng)且僅當(dāng)時(shí),等號(hào)成立),

當(dāng)取得最小值時(shí),直線l的直角坐標(biāo)方程為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解數(shù)學(xué)課外興趣小組的學(xué)習(xí)情況,從某次測(cè)試的成績(jī)中隨機(jī)抽取名學(xué)生的成績(jī)進(jìn)行分析,得到如圖所示的頻率分布直方圖.

1)根據(jù)頻率分布直方圖估計(jì)本次測(cè)試成績(jī)的眾數(shù);

2)從成績(jī)不低于分的兩組學(xué)生中任選,求選出的兩人來(lái)自同一組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】微信紅包是一款可以實(shí)現(xiàn)收發(fā)紅包、查收記錄和提現(xiàn)的手機(jī)應(yīng)用.某網(wǎng)絡(luò)運(yùn)營(yíng)商對(duì)甲、乙兩個(gè)品牌各5種型號(hào)的手機(jī)在相同環(huán)境下?lián)尩降募t包個(gè)數(shù)進(jìn)行統(tǒng)計(jì),得到如表數(shù)據(jù):

手機(jī)品牌型號(hào)

甲品牌(個(gè)

4

3

8

6

12

乙品牌(個(gè)

5

7

9

4

3

手機(jī)品牌紅包個(gè)數(shù)

優(yōu)

非優(yōu)

合計(jì)

乙品牌(個(gè)

合計(jì)

1)如果搶到紅包個(gè)數(shù)超過(guò)5個(gè)的手機(jī)型號(hào)為“優(yōu)”,否則“非優(yōu)”,請(qǐng)完成上述列聯(lián)表,據(jù)此判斷是否有的把握認(rèn)為搶到的紅包個(gè)數(shù)與手機(jī)品牌有關(guān)?

2)如果不考慮其它因素,要從甲品牌的5種型號(hào)中選出3種型號(hào)的手機(jī)進(jìn)行大規(guī)模宣傳銷售.表示選中的手機(jī)型號(hào)中搶到的紅包超過(guò)5個(gè)的型號(hào)種數(shù),求隨機(jī)變量的分布列及數(shù)學(xué)期望.

下面臨界值表供參考:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

<>2.706

3.841

5.024

6.635

7.879

10.828

參考公式:,其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,函數(shù)(其中是自然對(duì)數(shù)的底數(shù),).

1)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;

2)若當(dāng)時(shí)都有成立,求整數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,直線交橢圓、兩點(diǎn),且線段的中點(diǎn)為,直線與橢圓交于、兩點(diǎn)

1)求直線與直線斜率的乘積;

2)若,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸,建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為

1)求曲線C的普通方程;

2)直線l的參數(shù)方程為,(t為參數(shù)),直線lx軸交于點(diǎn)F,與曲線C的交點(diǎn)為AB,當(dāng)取最小值時(shí),求直線l的直角坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】《九章算術(shù)》的盈不足章第19個(gè)問(wèn)題中提到:“今有良馬與駑馬發(fā)長(zhǎng)安,至齊.齊去長(zhǎng)安三千里.良馬初日行一百九十三里,日增一十三里.駑馬初日行九十七里,日減半里…”其大意為:“現(xiàn)在有良馬和駑馬同時(shí)從長(zhǎng)安出發(fā)到齊去.已知長(zhǎng)安和齊的距離是3000里.良馬第一天行193里,之后每天比前一天多行13里.駑馬第一天行97里,之后每天比前一天少行0.5里…”試問(wèn)前4天,良馬和駑馬共走過(guò)的路程之和的里數(shù)為(  。

A.1235B.1800C.2600D.3000

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直四棱柱ABCDA1B1C1D1中,已知底面ABCD是菱形,點(diǎn)P是側(cè)棱C1C的中點(diǎn).

1)求證:AC1∥平面PBD;

2)求證:BDA1P

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】中國(guó)北京世界園藝博覽會(huì)于2019429日至107日在北京市延慶區(qū)舉行.組委會(huì)為方便游客游園,特推出“導(dǎo)引員”服務(wù).“導(dǎo)引員”的日工資方案如下:

方案:由三部分組成

(表一)

底薪

150

工作時(shí)間

6/小時(shí)

行走路程

11/公里

方案:由兩部分組成:(1)根據(jù)工作時(shí)間20/小時(shí)計(jì)費(fèi);(2)行走路程不超過(guò)4公里時(shí),按10/公里計(jì)費(fèi);超過(guò)4公里時(shí),超出部分按15/公里計(jì)費(fèi).已知“導(dǎo)引員”每天上班8小時(shí),由于各種因素,“導(dǎo)引員”每天行走的路程是一個(gè)隨機(jī)變量.試運(yùn)行期間,組委會(huì)對(duì)某天100名“導(dǎo)引員”的行走路程述行了統(tǒng)計(jì),為了計(jì)算方便對(duì)日行走路程進(jìn)行取整處理.例如行走1.8公里按1公里計(jì)算,行走5.7公里按5公里計(jì)算.如表所示:

(表二)

行走路程

(公里)

人數(shù)

5

10

15

45

25

(Ⅰ)分別寫出兩種方案的日工資(單位:元)與日行走路程(單位:公里)的函數(shù)關(guān)系

(Ⅱ)①現(xiàn)按照分層抽樣的方工式從共抽取5人組成愛(ài)心服務(wù)隊(duì),再?gòu)倪@5人中抽取3人當(dāng)小紅帽,求小紅帽中恰有1人來(lái)自的概率;

②“導(dǎo)引員”小張因?yàn)樯眢w原因每天只能行走12公里,如果僅從日工資的角度考慮,請(qǐng)你幫小張選擇使用哪種方案會(huì)使他的日工資更高?

查看答案和解析>>

同步練習(xí)冊(cè)答案