【題目】已知,函數(shù)(其中是自然對數(shù)的底數(shù),).
(1)當(dāng)時,求曲線在點處的切線方程;
(2)若當(dāng)時都有成立,求整數(shù)的最大值.
【答案】(1);(2).
【解析】
(1)將代入函數(shù)的解析式,求出和的值,利用點斜式可得出所求切線的方程;
(2)由結(jié)合參變量分離法得出對任意的恒成立,構(gòu)造函數(shù),利用導(dǎo)數(shù)求出函數(shù)在上的最小值,即可得出整數(shù)的最大值.
(1)當(dāng)時,,,根據(jù)題意可得,,
故曲線在點處的切線方程;
(2)由時都有成立,可得,
得,
構(gòu)造函數(shù),則,
,
令,,
則,令,得.
當(dāng)時,;當(dāng)時,.
所以,函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,
則,
又,,,,
所以,存在,使得,得.
當(dāng)時,,即,此時,函數(shù)單調(diào)遞減;
當(dāng)時,,即,此時,函數(shù)單調(diào)遞增.
所以,,
構(gòu)造,其中,則,
所以,函數(shù)在區(qū)間上單調(diào)遞減,則,
又對任意的恒成立,因此,整數(shù)的最大值為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ex-ax-1(e為自然對數(shù)的底數(shù)),a>0.
(1)若函數(shù)f(x)恰有一個零點,證明:aa=ea-1;
(2)若f(x)≥0對任意x∈R恒成立,求實數(shù)a的取值集合.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“二萬五千里長征”是1934年10月到1936年10月中國工農(nóng)紅軍進(jìn)行的一次戰(zhàn)略轉(zhuǎn)移,是人類歷史上的偉大奇跡,向世界展示了中國工農(nóng)紅軍的堅強(qiáng)意志,在期間發(fā)生了許多可歌可泣的英雄故事.在中國共產(chǎn)黨建黨周年之際,某中學(xué)組織了“長征英雄事跡我來講”活動,已知該中學(xué)共有高中生名,用分層抽樣的方法從該校高中學(xué)生中抽取一個容量為的樣本參加活動,其中高三年級抽了人,高二年級抽了人,則該校高一年級學(xué)生人數(shù)為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)).以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)若曲線上一點的極坐標(biāo)為,且過點,求的普通方程和的直角坐標(biāo)方程;
(2)設(shè)點,與的交點為,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線的參數(shù)方程為(為參數(shù)),以平面直角坐標(biāo)系的原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,橢圓的極坐標(biāo)方程為.
(1)求直線的普通方程(寫成一般式)和橢圓的直角坐標(biāo)方程(寫成標(biāo)準(zhǔn)方程);
(2)若直線與橢圓相交于,兩點,且與軸相交于點,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩個排球隊在采用局勝制排球決賽中相遇,已知每局比賽中甲獲勝的概率是.
(1)求比賽進(jìn)行了局就結(jié)束的概率;
(2)若第局甲勝,兩隊又繼續(xù)進(jìn)行了局結(jié)束比賽,求的分布列和數(shù)學(xué)期望
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,以原點O為極點,x軸的正半軸為極軸,建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為.
(1)求曲線C的普通方程;
(2)直線l的參數(shù)方程為,(t為參數(shù)),直線l與x軸交于點F,與曲線C的交點為A,B,當(dāng)取最小值時,求直線l的直角坐標(biāo)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),直線為曲線的切線(為自然對數(shù)的底數(shù)).
(1)求實數(shù)的值;
(2)用表示中的最小值,設(shè)函數(shù),若函數(shù)
為增函數(shù),求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】基于移動互聯(lián)技術(shù)的共享單車被稱為“新四大發(fā)明”之一,短時間內(nèi)就風(fēng)靡全國,帶給人們新的出行體驗,某共享單車運營公司的市場研究人員為了解公司的經(jīng)營狀況,對該公司最近六個月的市場占有率進(jìn)行了統(tǒng)計,結(jié)果如表:
月份 | ||||||
月份代碼x | 1 | 2 | 3 | 4 | 5 | 6 |
y | 11 | 13 | 16 | 15 | 20 | 21 |
請用相關(guān)系數(shù)說明能否用線性回歸模型擬合y與月份代碼x之間的關(guān)系,如果能,請計算出y關(guān)于x的線性回歸方程,并預(yù)測該公司2018年12月的市場占有率如果不能,請說明理由.
根據(jù)調(diào)研數(shù)據(jù),公司決定再采購一批單車擴(kuò)大市場,現(xiàn)有采購成本分別為1000元輛和800元輛的A,B兩款車型,報廢年限各不相同考慮公司的經(jīng)濟(jì)效益,該公司決定對兩款單車進(jìn)行科學(xué)模擬測試,得到兩款單車使用壽命頻數(shù)表如表:
報廢年限 車型 | 1年 | 2年 | 3年 | 4年 | 總計 |
A | 10 | 30 | 40 | 20 | 100 |
B | 15 | 40 | 35 | 10 | 100 |
經(jīng)測算,平均每輛單車每年可以為公司帶來收入500元不考慮除采購成本以外的其他成本,假設(shè)每輛單車的使用壽命都是整數(shù)年,用頻率估計每輛車使用壽命的概率,分別以這100輛單車所產(chǎn)生的平均利潤作為決策依據(jù),如果你是該公司的負(fù)責(zé)人,會選擇釆購哪款車型?
參考數(shù)據(jù):,,
參考公式:相關(guān)系數(shù)
回歸直線方程中的斜率和截距的最小二乘估計公式分別為:,.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com