【題目】已知橢圓的左、右焦點(diǎn)分別為,弦過(guò)點(diǎn),的周長(zhǎng)為,橢圓的離心率為
(1)求橢圓的方程;
(2)若,求的面積.
【答案】(1);(2)
【解析】
(1)由橢圓的定義以及△ABF2的周長(zhǎng)可以得出,再結(jié)合離心率即可求出和,即可得橢圓方程;
(2)由題意條件設(shè)出直線的方程和橢圓方程聯(lián)立消化簡(jiǎn)得出,利用向量數(shù)量積的坐標(biāo)運(yùn)算化簡(jiǎn),并聯(lián)立求出參數(shù),然后利用直線與橢圓的交點(diǎn)弦弦長(zhǎng)求點(diǎn)到直線距離,最后由S=即可得出答案.
(1)如圖由橢圓的定義及△ABF2的周長(zhǎng)為8,
可得,解得,
由離心率,解得,所以,
則所求的橢圓方程為.
(2)由題意設(shè)直線的方程,A(),B(),聯(lián)立,
消化簡(jiǎn)得:,
則:,由,
得:
和韋達(dá)定理聯(lián)立可解得,
由,得,
由點(diǎn)到直線距離,
所以△ABF2得面積為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)若,對(duì)任意,不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)的圖象向右平移個(gè)單位長(zhǎng)度,所得圖象對(duì)應(yīng)的函數(shù)為.
(1)求函數(shù)的表達(dá)式及其周期;
(2)求函數(shù)在上的對(duì)稱軸、對(duì)稱中心及其單調(diào)增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知向量,設(shè),向量.
(1)若,求向量與的夾角;
(2)若 對(duì)任意實(shí)數(shù)都成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一個(gè)角形海灣(常數(shù)為銳角).?dāng)M用長(zhǎng)度為(為常數(shù))的圍網(wǎng)圍成一個(gè)養(yǎng)殖區(qū),有以下兩種方案可供選擇:方案一:如圖1,圍成扇形養(yǎng)殖區(qū),其中;方案二:如圖2,圍成三角形養(yǎng)殖區(qū),其中.
(1)求方案一中養(yǎng)殖區(qū)的面積;
(2)求方案二中養(yǎng)殖區(qū)的最大面積(用表示);
(3)為使養(yǎng)殖區(qū)的面積最大,應(yīng)選擇何種方案?并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某省新課改后某校為預(yù)測(cè)2020屆高三畢業(yè)班的本科上線情況,從該校上一屆高三(1)班到高三(5)班隨機(jī)抽取50人,得到各班抽取的人數(shù)和其中本科上線人數(shù),并將抽取數(shù)據(jù)制成下面的條形統(tǒng)計(jì)圖.
(1)根據(jù)條形統(tǒng)計(jì)圖,估計(jì)本屆高三學(xué)生本科上線率.
(2)已知該省甲市2020屆高考考生人數(shù)為4萬(wàn),假設(shè)以(1)中的本科上線率作為甲市每個(gè)考生本科上線的概率.
(i)若從甲市隨機(jī)抽取10名高三學(xué)生,求恰有8名學(xué)生達(dá)到本科線的概率(結(jié)果精確到0.01);
(ii)已知該省乙市2020屆高考考生人數(shù)為3.6萬(wàn),假設(shè)該市每個(gè)考生本科上線率均為,若2020屆高考本科上線人數(shù)乙市的均值不低于甲市,求p的取值范圍.
可能用到的參考數(shù)據(jù):取,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的左、右焦點(diǎn)為別為F1、F2,且過(guò)點(diǎn)和.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)如圖,點(diǎn)A為橢圓上一位于x軸上方的動(dòng)點(diǎn),AF2的延長(zhǎng)線與橢圓交于點(diǎn)B,AO的延長(zhǎng)線與橢圓交于點(diǎn)C,求△ABC面積的最大值,并寫出取到最大值時(shí)直線BC的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)).在以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸的極坐標(biāo)系中,曲線C的極坐標(biāo)方程為.
(1)求直線的極坐標(biāo)方程及曲線C的直角坐標(biāo)方程;
(2)若是直線上的一點(diǎn),是曲線C上的一點(diǎn),求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=xlnx,
(1)求函數(shù)f(x)過(guò)(﹣1,﹣2)的切線的方程
(2)過(guò)點(diǎn)P(1,t)存在兩條直線與曲線y=f(x)相切,求t的取值范圍
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com