【題目】已知函數(shù)().
(1)當時,求曲線在點處的切線方程;
(2)若在定義域內(nèi)為單調(diào)函數(shù),求實數(shù)的取值范圍.
【答案】(1);(2).
【解析】
(1)對函數(shù)求導(dǎo),解得函數(shù)在點處切線的斜率,根據(jù)點斜式即可求得切線方程;
(2)構(gòu)造函數(shù),利用導(dǎo)數(shù)求解其值域,再根據(jù)與之間的關(guān)系,求解恒成立問題即可得參數(shù)的范圍.
(1)當時,,故;
故可得,
故切線方程為:,整理得.
故曲線在點處的切線方程為.
(2)因為,故可得.
若在定義域內(nèi)為單調(diào)函數(shù),則恒成立,或恒成立.
構(gòu)造函數(shù),故可得,
令,解得,
故在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減.
故,且當趨近于0時,趨近于.
故.
若要保證在定義域內(nèi)恒成立,即恒成立,
即在定義域內(nèi)恒成立,則只需;
若要保證在定義域內(nèi)恒成立,則恒成立,
則在定義域內(nèi)恒成立,但沒有最小值,故舍去.
綜上所述,要保證在定義域內(nèi)為單調(diào)函數(shù),
則.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解某班學(xué)生喜愛打籃球是否與性別有關(guān),對該班40名學(xué)生進行了問卷調(diào)查,得到了如下的列聯(lián)表:
男生 | 女生 | 總計 | |
喜愛打籃球 | 19 | 15 | 34 |
不喜愛打籃球 | 1 | 5 | 6 |
總計 | 20 | 20 | 40 |
(1)在女生不喜愛打籃球的5個個體中,隨機抽取2人,求女生甲被選中的概率;
(2)判斷能否在犯錯誤的概率不超過的條件下認為喜愛籃球與性別有關(guān)?
附:,其中.
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | <>0.005 | 0.001 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中,過點的動圓恒與軸相切,為該圓的直徑,設(shè)點的軌跡為曲線.
(1)求曲線的方程;
(2)過點的任意直線與曲線交于點,為的中點,過點作軸的平行線交曲線于點,關(guān)于點的對稱點為,除以外,直線與是否有其它公共點?說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】天文學(xué)中為了衡量星星的明暗程度,古希臘天文學(xué)家喜帕恰斯(,又名依巴谷)在公元前二世紀首先提出了星等這個概念.星等的數(shù)值越小,星星就越亮;星等的數(shù)值越大,它的光就越暗.到了1850年,由于光度計在天體光度測量中的應(yīng)用,英國天文學(xué)家普森()又提出了衡量天體明暗程度的亮度的概念.天體的明暗程度可以用星等或亮度來描述.兩顆星的星等與亮度滿足.其中星等為的星的亮度為.已知“心宿二”的星等是1.00.“天津四” 的星等是1.25.“心宿二”的亮度是“天津四”的倍,則與最接近的是(當較小時, )
A.1.24B.1.25C.1.26D.1.27
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)動圓經(jīng)過點,且與圓為圓心)相內(nèi)切.
(Ⅰ)求動圓圓心的軌跡的方程;
(Ⅱ)設(shè)經(jīng)過的直線與軌跡交于、兩點,且滿足的點也在軌跡上,求四邊形的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標系中,圓的參數(shù)方程為(為參數(shù)),圓與圓外切于原點,且兩圓圓心的距離,以坐標原點為極點,軸正半軸為極軸建立極坐標系.
(1)求圓和圓的極坐標方程;
(2)過點的直線,與圓異于點的交點分別為點,,與圓異于點的交點分別為點,,且,求四邊形面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知過橢圓的四個頂點與坐標軸垂直的四條直線圍成的矩形(是第一象限內(nèi)的點)的面積為,且過橢圓的右焦點的傾斜角為的直線過點.
(1)求橢圓的標準方程
(2)若射線與橢圓的交點分別為.當它們的斜率之積為時,試問的面積是否為定值?若為定值,求出此定值;若不為定值,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com