【題目】如圖,游客從某旅游景區(qū)的景點A處下山至C處有兩種路徑.一種是從A沿直線步行到C,另一種是先從A沿索道乘纜車到B,然后從B沿直線步行到C.現(xiàn)有甲、乙兩位游客從A處下山,甲沿AC勻速步行,速度為50m/min.在甲出發(fā)2min后,乙從A乘纜車到B,在B處停留1min后,再從B勻速步行到C.假設(shè)纜車勻速直線運動的速度為130m/min,山路AC長為1260m,經(jīng)測量,,.
(Ⅰ)問乙出發(fā)多少分鐘后,乙在纜車上與甲的距離最短?
(Ⅱ)為使兩位游客在處互相等待的時間不超過分鐘,乙步行的速度應(yīng)控制在什么范圍內(nèi)?
【答案】(Ⅰ)(Ⅱ)
【解析】
試題分析:(Ⅰ)設(shè)乙出發(fā)t分鐘后,甲、乙兩游客距離為d,此時,甲行走了(100+50t)m,乙距離A處130t m,由余弦定理可得;(Ⅱ)設(shè)乙步行的速度為 v m/min,從而求出v的取值范圍
試題解析:(Ⅰ)∵,∴∴,
∴
根據(jù)得,所以乙在纜車上的時間為(min).
設(shè)乙出發(fā)()分鐘后,甲、乙距離為,則
∴時,即乙出發(fā)分鐘后,乙在纜車上與甲的距離最短.
(Ⅱ)由正弦定理得(m).
乙從出發(fā)時,甲已經(jīng)走了50(2+8+1)=550(m),還需走710m才能到達(dá).
設(shè)乙步行速度為,則.解得.
∴為使兩位游客在處互相等待的時間不超過分鐘,乙步行的速度應(yīng)控制在范圍內(nèi).
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在12件同類型的零件中有2件次品,抽取3次進(jìn)行檢驗,每次抽取1件,并且取出后不再放回,若以ξ和η分別表示取到的次品數(shù)和正品數(shù).
(1)求ξ的分布列、均值和方差;
(2)求η的分布列、均值和方差.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知過點且斜率為的直線與圓:交于點兩點.
(1)求的取值范圍;
(2)請問是否存在實數(shù)k使得(其中為坐標(biāo)原點),如果存在請求出k的值,并求;如果不存在,請說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在梯形中, , , ,四邊形為矩形,平面平面, .
(1)求證: 平面;
(2)點在線段上運動,設(shè)平面與平面所成二面角的平面角為,試求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,有一直徑為8米的半圓形空地,現(xiàn)計劃種植甲、乙兩種水果,已知單位面積種植甲水果的經(jīng)濟(jì)價值是種植乙水果經(jīng)濟(jì)價值的5倍,但種植甲水果需要有輔助光照.半圓周上的處恰有一可旋轉(zhuǎn)光源滿足甲水果生長的需要,該光源照射范圍是,點在直徑上,且.
(1)若米,求的長;
(2)設(shè), 求該空地產(chǎn)生最大經(jīng)濟(jì)價值時種植甲種水果的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中.
(1)當(dāng)時,求曲線在點處的切線的斜率;
(2)當(dāng)時,求函數(shù)的單調(diào)區(qū)間與極值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的中心為坐標(biāo)原點,其離心率為,橢圓的一個焦點和拋物線的焦點重合.
(1)求橢圓的方程
(2)過點的動直線交橢圓于、兩點,試問:在平面上是否存在一個定點,使得無論如何轉(zhuǎn)動,以為直徑的圓恒過點,若存在,說出點的坐標(biāo),若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)生產(chǎn)甲,乙兩種產(chǎn)品均需用兩種原料,已知生產(chǎn)1噸每種產(chǎn)品需用原料及每天原料的可用限額如下表所示,如果生產(chǎn)1噸甲,乙產(chǎn)品可獲利潤分別為3萬元、4萬元,則該企業(yè)可獲得最大利潤為__________萬元.
甲 | 乙 | 原料限額 | |
A(噸) | 3 | 2 | 12 |
B(噸) | 1 | 2 | 8 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com