【題目】已知函數(shù),其中.
(1)當(dāng)時,求曲線在點(diǎn)處的切線的斜率;
(2)當(dāng)時,求函數(shù)的單調(diào)區(qū)間與極值.
【答案】(1) ;(2)當(dāng)時,在內(nèi)是增函數(shù),在內(nèi)是減函數(shù),函數(shù)的極大值為,函數(shù)的極小值為;當(dāng)時,在內(nèi)是增函數(shù),在內(nèi)是減函數(shù),函數(shù)的極大值為,函數(shù)在處取得極小值,且.
【解析】
試題分析:(1) 當(dāng)時, 求 即可;(2)由得,或,分與討論兩根的大小,列表求單調(diào)區(qū)間與極值即可.
試題解析: (1)當(dāng)時,故.
所以曲線在點(diǎn)處的切線的斜率為
(2)解:.
令,解得,或.由知,.
以下分兩種情況討論:
若,則.當(dāng)變化時,的變化情況如下表:
所以在內(nèi)是增函數(shù),在內(nèi)是減函數(shù).
函數(shù)在處取得極大值,且.
函數(shù)在處取得極小值,且.
若,則,當(dāng)變化時,的變化情況如下表:
所以在內(nèi)是增函數(shù),在內(nèi)是減函數(shù).
函數(shù)在處取得極小值,且,
函數(shù)在處取得極大值,且.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線().
(1)證明:直線過定點(diǎn);
(2)若直線不經(jīng)過第四象限,求的取值范圍;
(3)若直線軸負(fù)半軸于,交軸正半軸于,△的面積為(為坐標(biāo)原點(diǎn)),求的最小值,并求此時直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知四棱錐,底面是、邊長為的菱形,又底,且,點(diǎn)分別是棱的中點(diǎn).
(1)證明:平面;
(2)證明:平面平面;
(3)求點(diǎn)到平面的距離.[
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,游客從某旅游景區(qū)的景點(diǎn)A處下山至C處有兩種路徑.一種是從A沿直線步行到C,另一種是先從A沿索道乘纜車到B,然后從B沿直線步行到C.現(xiàn)有甲、乙兩位游客從A處下山,甲沿AC勻速步行,速度為50m/min.在甲出發(fā)2min后,乙從A乘纜車到B,在B處停留1min后,再從B勻速步行到C.假設(shè)纜車勻速直線運(yùn)動的速度為130m/min,山路AC長為1260m,經(jīng)測量,,.
(Ⅰ)問乙出發(fā)多少分鐘后,乙在纜車上與甲的距離最短?
(Ⅱ)為使兩位游客在處互相等待的時間不超過分鐘,乙步行的速度應(yīng)控制在什么范圍內(nèi)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在邊長為1的等邊三角形ABC中,D,E分別是AB,AC邊上的點(diǎn),AD=AE,F(xiàn)是BC的中點(diǎn),AF與DE交于點(diǎn)G,將△ABF沿AF折起,得到如圖2所示的三棱錐A﹣BCF,其中BC=.
(Ⅰ)證明:DE∥平面BCF;
(Ⅱ)證明:CF⊥平面ABF;
(Ⅲ)當(dāng)AD=時,求三棱錐F﹣DEG的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn),點(diǎn)是圓上的任意一點(diǎn),線段的垂直平分線與直線交于點(diǎn).
(Ⅰ)求點(diǎn)的軌跡方程;
(Ⅱ)若直線與點(diǎn)的軌跡有兩個不同的交點(diǎn)和,且原點(diǎn)總在以為直徑的圓的內(nèi)部,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知國家某5A級大型景區(qū)對擁擠等級與每日游客數(shù)量(單位:百人)的關(guān)系有如下規(guī)定:當(dāng)時,擁擠等級為“優(yōu)”;當(dāng)時,擁擠等級為“良”;當(dāng)時,擁擠等級為“擁擠”;當(dāng)時,擁擠等級為“嚴(yán)重?fù)頂D”。該景區(qū)對6月份的游客數(shù)量作出如圖的統(tǒng)計(jì)數(shù)據(jù):
(Ⅰ)下面是根據(jù)統(tǒng)計(jì)數(shù)據(jù)得到的頻率分布表,求出的值,并估計(jì)該景區(qū)6月份游客人數(shù)的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);
游客數(shù)量 (單位:百人) | ||||
天數(shù) | ||||
頻率 |
(Ⅱ)某人選擇在6月1日至6月5日這5天中任選2天到該景區(qū)游玩,求他這2天遇到的游客擁擠等級均為“優(yōu)”的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f(x)=si n-2cos2+1.
(1)求f(x)的最小正周期;
(2)若函數(shù)y=f(x)與y=g(x)的圖象關(guān)于直線x=1對稱,求當(dāng)x∈時,y=g(x)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列中,,點(diǎn)()在直線y = x上,
(Ⅰ)計(jì)算a2,a3,a4的值;
(Ⅱ)令bn=an+1﹣an﹣1,求證:數(shù)列{bn}是等比數(shù)列;
(Ⅲ)設(shè)Sn、Tn分別為數(shù)列{an}、{bn}的前n項(xiàng)和,是否存在實(shí)數(shù)λ,使得數(shù)列為等差數(shù)列?若存在,試求出λ的值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com