【題目】經(jīng)市場(chǎng)調(diào)查,某旅游城市在過去的一個(gè)月內(nèi)(以30天計(jì)),第t天(1≤t≤30,t∈N*)的旅游人數(shù)f(t)(單位:萬人)近似地滿足f(t)=4+ ,而人均日消費(fèi)俄g(t)(單位:元)近似地滿足g(t)=
(1)試求所有游客在該城市旅游的日消費(fèi)總額W(t)(單位:萬元)與時(shí)間t(1≤t≤30,t∈N*)的函數(shù)表達(dá)式;
(2)求所有游客在該城市旅游的日消費(fèi)總額的最小值.

【答案】
(1)解:由題意,根據(jù)該城市的旅游日消費(fèi)總額=日旅游人數(shù)×人均消費(fèi)的錢數(shù),

可得:W(t)=f(t)g(t)

= ;


(2)解:由(1)可知:當(dāng)t∈[1,20]時(shí),401+4t+ ≥401+2 =441,

當(dāng)且僅當(dāng)4t= 即t=5時(shí)取等號(hào);

當(dāng)t∈(20,30]時(shí),因?yàn)閃(t)=559+ ﹣4t遞減,

所以t=30時(shí),W(t)有最小值W(30)=443+ ,

∵443+ >441,

∴t∈[1,30]時(shí),W(t)的最小值為441萬元.


【解析】(1)利用日消費(fèi)總額=日旅游人數(shù)×人均消費(fèi)的錢數(shù),化簡(jiǎn)即得結(jié)論;(2)通過(1)可知當(dāng)t∈[1,20]時(shí)利用基本不等式可知當(dāng)且僅當(dāng)t=5時(shí)取最小值441,當(dāng)t∈(20,30]時(shí)利用函數(shù)的單調(diào)性可知當(dāng)t=30時(shí)W(t)有最小值443+ ,進(jìn)而比較即得結(jié)論.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某個(gè)體戶計(jì)劃經(jīng)銷A,B兩種商品,據(jù)調(diào)查統(tǒng)計(jì),當(dāng)投資額為x(x≥0)萬元時(shí),在經(jīng)銷A,B商品中所獲得的收益分別為f(x)萬元與g(x)萬元,其中f(x)=a(x-1)+2,g(x)=6ln(xb)(a>0,b>0).已知投資額為零時(shí)收益為零.

(1)a,b的值;

(2)如果該個(gè)體戶準(zhǔn)備投入5萬元經(jīng)銷這兩種商品,請(qǐng)你幫他制定一個(gè)資金投入方案,使他能獲得最大利潤(rùn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)數(shù)列{an}是各項(xiàng)均為正數(shù)的等比數(shù)列,且a1=3,a2+a3=36.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}對(duì)任意的正整數(shù)n都有 + + +…+ =2n+1,求b1+b2+b3+…+b2015的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為 (α為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為,曲線C2的極坐標(biāo)方程為 (a>0).

(1)求直線l與曲線C1的交點(diǎn)的極坐標(biāo)(ρ,θ)(ρ≥0,0≤θ<2π);

(2)若直線lC2相切,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=2x3-3(a+1)x2+6ax+8,其中a∈R.

(1)若f(x)在x=3處取得極值,求常數(shù)a的值;

(2)若f(x)在(-∞,0)上為增函數(shù),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知p:x2-5ax+4a2<0,其中a>0,q:3<x≤4.

(1)a=1,p∧q為真,求實(shí)數(shù)x的取值范圍;

(2)pq的必要不充分條件,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,且Sn=4an﹣p,其中p是不為零的常數(shù).

(1)證明:數(shù)列{an}是等比數(shù)列;

(2)當(dāng)p=3時(shí),若數(shù)列{bn}滿足bn+1=bn+an(nN*),b1=2,求數(shù)列{bn}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四面體ABCD中,AB,BC,BD兩兩垂直,BC=BD=2,點(diǎn)E是CD的中點(diǎn),異面直線AD與BE所成角的余弦值為,則直線BE與平面ACD所成角的正弦值為(  )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為 (t為參數(shù)),在以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正非負(fù)半軸為極軸,取相同單位長(zhǎng)度的極坐標(biāo)系中,圓的極坐標(biāo)方程為ρ=4sinθ.
(1)求直線l被圓截得的弦長(zhǎng);
(2)從極點(diǎn)作圓C的弦,求各弦中點(diǎn)的極坐標(biāo)方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案