【題目】已知橢圓的長軸為,且過點
(1)求橢圓的方程;
(2)設(shè)點為原點,若點在曲線上,點在直線上,且,試判斷直線與圓的位置關(guān)系,并證明你的結(jié)論.
【答案】(1)(2)直線與圓相切,證明見解析
【解析】
(1)由題意可得,代入的坐標,可得,的方程,解方程可得橢圓方程;
(2)設(shè)出點,的坐標分別為,,其中,由得到,用坐標表示后把用含有點的坐標表示,然后分,的橫坐標相等和不相等寫出直線的方程,然后由圓的圓心到的距離和圓的半徑相等,證明直線與圓相切.
(1)由題意可得,即,
又,解得,
即有橢圓的方程為;
(2)直線與圓相切.
證明如下:設(shè)點,的坐標分別為,,其中.
,
,即,
解得.
當(dāng)時,,代入橢圓的方程,得,
故直線的方程為,
圓心到直線的距離.
此時直線與圓相切.
當(dāng)時,直線的方程為,
即.
圓心到直線的距離
又,.
故.
此時直線與圓相切.
綜合得直線與圓相切.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)對其定義域內(nèi)的任意,,當(dāng)時總有,則稱為緊密函數(shù),例如函數(shù)是緊密函數(shù),下列命題:
緊密函數(shù)必是單調(diào)函數(shù);函數(shù)在時是緊密函數(shù);
函數(shù)是緊密函數(shù);
若函數(shù)為定義域內(nèi)的緊密函數(shù),,則;
若函數(shù)是緊密函數(shù)且在定義域內(nèi)存在導(dǎo)數(shù),則其導(dǎo)函數(shù)在定義域內(nèi)的值一定不為零.
其中的真命題是______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中醫(yī)藥,是包括漢族和少數(shù)民族醫(yī)藥在內(nèi)的我國各民族醫(yī)藥的統(tǒng)稱,是反映中華民族對生命、健康和疾病的認識,具有悠久歷史傳統(tǒng)和獨特理論及技術(shù)方法的醫(yī)藥學(xué)體系,是中華民族的瑰寶.某科研機構(gòu)研究發(fā)現(xiàn),某品種中醫(yī)藥的藥物成分甲的含量(單位:克)與藥物功效(單位:藥物單位)之間具有關(guān)系.檢測這種藥品一個批次的5個樣本,得到成分甲的平均值為4克,標準差為克,則估計這批中醫(yī)藥的藥物功效的平均值為( )
A.22藥物單位B.20藥物單位C.12藥物單位D.10藥物單位
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,底面為正方形,△PAD為等邊三角形,平面PAD丄平面PCD.
(1)證明:平面PAD丄平面ABCD:
(2)若AB=2,Q為線段的中點,求三棱錐Q-PCD的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解某地區(qū)初中學(xué)生的體質(zhì)健康情況,統(tǒng)計了該地區(qū)8所學(xué)校學(xué)生的體質(zhì)健康數(shù)據(jù),按總分評定等級為優(yōu)秀,良好,及格,不及格.良好及其以上的比例之和超過40%的學(xué)校為先進校.各等級學(xué)生人數(shù)占該校學(xué)生總?cè)藬?shù)的比例如下表:
比例 學(xué)校 等級 | 學(xué)校A | 學(xué)校B | 學(xué)校C | 學(xué)校D | 學(xué)校E | 學(xué)校F | 學(xué)校G | 學(xué)校H |
優(yōu)秀 | 8% | 3% | 2% | 9% | 1% | 22% | 2% | 3% |
良好 | 37% | 50% | 23% | 30% | 45% | 46% | 37% | 35% |
及格 | 22% | 30% | 33% | 26% | 22% | 17% | 23% | 38% |
不及格 | 33% | 17% | 42% | 35% | 32% | 15% | 38% | 24% |
(1)從8所學(xué)校中隨機選出一所學(xué)校,求該校為先進校的概率;
(2)從8所學(xué)校中隨機選出兩所學(xué)校,記這兩所學(xué)校中不及格比例低于30%的學(xué)校個數(shù)為X,求X的分布列;
(3)設(shè)8所學(xué)校優(yōu)秀比例的方差為S12,良好及其以下比例之和的方差為S22,比較S12與S22的大小.(只寫出結(jié)果)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在六棱錐P﹣ABCDEF中,六邊形ABCDEF為正六邊形,平面PAB⊥平面ABCDEF,AB=1,PA,PB=2.
(1)求證:PA⊥平面ABCDEF;
(2)求直線PD與平面PAE所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,平面,四邊形為菱形,,,E,F分別為,的中點.
(1)求證:平面;
(2)點G是線段上一動點,若與平面所成最大角的正切值為,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校為了學(xué)生的健康,對課間操活動做了如下規(guī)定:課間操時間若有霧霾則停止課間操,若無霧霾則組織課間操.預(yù)報得知,在未來一周從周一到周五的課間操時間出現(xiàn)霧霾的概率是:前3天均為,后2天均為,且每一天出現(xiàn)霧霾與否是相互獨立的.
(1)求未來5天至少一天停止課間操的概率;
(2)求未來5天組織課間操的天數(shù)X的分布列和數(shù)學(xué)期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com