【題目】某學(xué)校為了學(xué)生的健康,對課間操活動做了如下規(guī)定:課間操時間若有霧霾則停止課間操,若無霧霾則組織課間操.預(yù)報得知,在未來一周從周一到周五的課間操時間出現(xiàn)霧霾的概率是:前3天均為,后2天均為,且每一天出現(xiàn)霧霾與否是相互獨立的.
(1)求未來5天至少一天停止課間操的概率;
(2)求未來5天組織課間操的天數(shù)X的分布列和數(shù)學(xué)期望.
【答案】(1).(2)見解析,數(shù)學(xué)期望為2.
【解析】
(1)可以求出五天都可以出操的概率,然后用對立事件概率公式計算;
(2)天數(shù)X的可能取值為0,1,2,3,4,5,分別計算概率得分布列,由分布列可計算期望.
(1)課間操時間若有霧霾則停止課間操,若無霧霾則組織課間操.
預(yù)報得知,在未來一周從周一到周五的課間操時間出現(xiàn)霧霾的概率是:
前3天均為,后2天均為,且每一天出現(xiàn)霧霾與否是相互獨立的.
∴未來5天每天都組織課間操的概率為:
P1,
∴未來5天至少一天停止課間操的概率:
P=1﹣P1=1.
(2)未來5天組織課間操的天數(shù)X的可能取值為0,1,2,3,4,5,
P(X=0),
P(X=1),
P(X=2),
P(X=3),
P(X=4),
P(X=5),
∴X的分布列為:
X | 0 | 1 | 2 | 3 | 4 | 5 |
P |
數(shù)學(xué)期望E(X)2.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的長軸為,且過點
(1)求橢圓的方程;
(2)設(shè)點為原點,若點在曲線上,點在直線上,且,試判斷直線與圓的位置關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左右焦點分別為,離心率為,點在橢圓上,且的周長為.
(1)求橢圓的方程;
(2)已知過點的直線與橢圓交于兩點,點在直線上,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有次水下考古活動中,潛水員需潛入水深為30米的水底進行作業(yè),其用氧量包含以下三個方面:①下潛時,平均速度為每分鐘米,每分鐘的用氧量為升;②水底作業(yè)需要10分鐘,每分鐘的用氧量為0.3升;③返回水面時,速度為每分鐘米,每分鐘用氧量為0.2升;設(shè)潛水員在此次考古活動中的總用氧量為升;
(1)將表示為的函數(shù);
(2)若,求總用氧量的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于數(shù)列,稱(其中)為數(shù)列的前k項“波動均值”.若對任意的,都有,則稱數(shù)列為“趨穩(wěn)數(shù)列”.
(1)若數(shù)列1,,2為“趨穩(wěn)數(shù)列”,求的取值范圍;
(2)若各項均為正數(shù)的等比數(shù)列的公比,求證:是“趨穩(wěn)數(shù)列”;
(3)已知數(shù)列的首項為1,各項均為整數(shù),前項的和為. 且對任意,都有, 試計算: ().
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,平面,底面是直角梯形,其中,,,,為棱上的點,且.
(1)求證:平面;
(2)求二面角的余弦值;
(3)設(shè)為棱上的點(不與,重合),且直線與平面所成角的正弦值為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列滿足,其中A,B是兩個確定的實數(shù),
(1)若,求的前n項和;
(2)證明:不是等比數(shù)列;
(3)若,數(shù)列中除去開始的兩項外,是否還有相等的兩項,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,,四邊形ACEF為正方形,且平面平面ACEF.
(1)證明:;
(2)求平面BEF與平面BCF所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:的左頂點為,右焦點為,斜率為1的直線與橢圓交于,兩點,且,其中為坐標原點.
(1)求橢圓的標準方程;
(2)設(shè)過點且與直線平行的直線與橢圓交于,兩點,若點滿足,且與橢圓的另一個交點為,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com