【題目】如圖,在四棱錐中,平面,四邊形為菱形,,,E,F分別為,的中點.

1)求證:平面;

2)點G是線段上一動點,若與平面所成最大角的正切值為,求二面角的余弦值.

【答案】(1)證明見解析(2)

【解析】

1)取的中點H,連結(jié),證明四邊形為平行四邊形得到證明.

2)連結(jié),證明與平面所成角的平面角得到,以A為原點,如圖建立空間直角坐標系,平面的一個法向量為,平面的法向量,計算夾角得到答案.

1)取的中點H,連結(jié),

E,F分別為的中點,∴,

由題知,∴,,

∴四邊形為平行四邊形,∴,

平面,且平面,∴平面.

2)連結(jié),∵四邊形為菱形,,

是等邊三角形,E中點,

,且,

平面,平面,∴,

平面

平面,∴,

與平面所成角的平面角,

中,∵,

∴當(dāng)最短時,最大,,

,∴,

中,,,∴,

A為原點,如圖建立空間直角坐標系,

,

,∴平面,

∴平面的一個法向量為,

平面的法向量,

,∴,取,得,

設(shè)二面角的平面角為,

,

∴二面角的余弦值為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}中,相鄰兩項an,an+1是關(guān)于x的方程:x2+3nx+bn0nN*)的兩實根,且a11

1)若Sn為數(shù)列{an}的前n項和,求S100 ;

2)求數(shù)列{an}{bn}的通項公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的長軸為,且過點

1)求橢圓的方程;

2)設(shè)點為原點,若點在曲線上,點在直線上,且,試判斷直線與圓的位置關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于函數(shù),若在定義域內(nèi)存在實數(shù),滿足,則稱為“局部奇函數(shù)”.

(1)已知二次函數(shù),試判斷是否為“局部奇函數(shù)”?并說明理由;

(2)若是定義在區(qū)間上的“局部奇函數(shù)”,求實數(shù)的取值范圍;

(3)若為定義域上的“局部奇函數(shù)”,求實數(shù)的取值范圍;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《中華人民共和國個人所得稅法》規(guī)定,公民月收入總額(工資、薪金等)不超過免征額的部分不必納稅,超過免征額的部分為全月應(yīng)納稅所得額,個人所得稅稅款按稅率表分段累計計算.為了給公民合理減負,穩(wěn)步提升公民的收入水平,自2018101日起,個人所得稅免征額和稅率進行了調(diào)整,調(diào)整前后的個人所得稅稅率表如下:

1)已知小李20189月份上交的稅費是295元,10月份月工資、薪金等稅前收入與9月份相同,請幫小李計算一下稅率調(diào)整后小李10月份的稅后實際收入是多少?

2)某稅務(wù)部門在小李所在公司利用分層抽樣方法抽取某月100位不同層次員工的稅前收入,并制成下面的頻率分布直方圖.

(ⅰ)請根據(jù)頻率分布直方圖估計該公司員工稅前收入的中位數(shù);

(ⅱ)同一組中的數(shù)據(jù)以這組數(shù)據(jù)所在區(qū)間中點的值作代表,按調(diào)整后稅率表,試估計小李所在的公司員工該月平均納稅多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),若關(guān)于x的方程有四個不等實根,且恒成立,則實數(shù)的最小值為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左右焦點分別為,離心率為,點在橢圓上,且的周長為

1)求橢圓的方程;

2)已知過點的直線與橢圓交于兩點,點在直線上,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有次水下考古活動中,潛水員需潛入水深為30米的水底進行作業(yè),其用氧量包含以下三個方面:①下潛時,平均速度為每分鐘米,每分鐘的用氧量為升;②水底作業(yè)需要10分鐘,每分鐘的用氧量為0.3升;③返回水面時,速度為每分鐘米,每分鐘用氧量為0.2升;設(shè)潛水員在此次考古活動中的總用氧量為升;

(1)將表示為的函數(shù);

(2)若,求總用氧量的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,,四邊形ACEF為正方形,且平面平面ACEF.

(1)證明:;

(2)求平面BEF與平面BCF所成銳二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊答案