【題目】依據(jù)某地某條河流8月份的水文觀測點的歷史統(tǒng)計數(shù)據(jù)所繪制的頻率分布直方圖如圖(甲)所示;依據(jù)當?shù)氐牡刭|構造,得到水位與災害等級的頻率分布條形圖如圖(乙)所示.
(1)試估計該河流在8月份水位的眾數(shù);
(2)我們知道若該河流8月份的水位小于40米的頻率為f,該河流8月份的水位小于40米的情況下發(fā)生1級災害的頻率為g,則該河流8月份的水位小于40且發(fā)生1級災害的頻率為,其他情況類似.據(jù)此,試分別估計該河流在8月份發(fā)生12級災害及不發(fā)生災害的頻率,,;
(3)該河流域某企業(yè),在8月份,若沒受12級災害影響,利潤為500萬元;若受1級災害影響,則虧損100萬元;若受2級災害影響則虧損1000萬元.現(xiàn)此企業(yè)有如下三種應對方案:
方案 | 防控等級 | 費用(單位:萬元) |
方案一 | 無措施 | 0 |
方案二 | 防控1級災害 | 40 |
方案三 | 防控2級災害 | 100 |
試問,如僅從利潤考慮,該企業(yè)應選擇這三種方案中的哪種方案?說明理由.
【答案】(1)37.5(2)發(fā)生0.155, 0.035;不發(fā)生0.81,,,分別為0.155,0.035,0.81(3)方案二,理由見解析
【解析】
(1)根據(jù)最高的矩形的中點即為眾數(shù),即可得到本題答案;
(2)由甲圖,得該河流8月份的水位小于40米,在40米和50米之間,大于50米的對應的頻率,結合乙圖,即可算得該河流在8月份發(fā)生1級災害、2級災害和不發(fā)生災害的對應的頻率;
(3)把三種方案對應的平均利潤算出來,比較大小,即可得到本題答案.
(1)由題得,,估計該河流在8月份水位的眾數(shù)為37.5米
(2)依據(jù)甲圖,該河流8月份的水位小于40米,在40米和50米之間,大于50米的頻率分別為,,.根據(jù)乙圖,該河流在8月份發(fā)生1級災害的頻率為該河流在8月份發(fā)生2級災害的頻率為該河流在8月份不發(fā)生災害的頻率為估計,,分別為0.155,0.035,0.81.
(3)由(2)若選擇方案一,則該企業(yè)在8月份的平均利潤(萬元);
若選擇方案二,則該企業(yè)在8月份的平均利潤(萬元);
若選擇方案三,則該企業(yè)在8月份的平均利潤(萬元).
由于,因此企業(yè)應選方案二
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在棱長為a的正方體ABCD﹣A1B1C1D1中,P,Q,L分別為棱A1D1,C1D1,BC的中點.
(1)求證:AC⊥QL;
(2)求四面體DPQL的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)().
(Ⅰ)設為函數(shù)的導函數(shù),求函數(shù)的單調區(qū)間;
(Ⅱ)若函數(shù)在上有最大值,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知是圓柱底面圓O的直徑,底面半徑,圓柱的表面積為,點在底面圓上,且直線與下底面所成的角的大小為.
(1)求的長;
(2)求二面角的大小的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=|2x﹣1|﹣a.
(1)當a=1時,解不等式f(x)>x+1;
(2)若存在實數(shù)x,使得f(x)f(x+1),求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】將函數(shù)在區(qū)間內的全部極值點按從小到大的順序排成數(shù)列.
(1)求數(shù)列的通項公式;
(2)設,數(shù)列的前n項和,求證:數(shù)列為等比數(shù)列,并求.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com