【題目】已知函數(shù)f(x)=|2x﹣1|﹣a.
(1)當(dāng)a=1時(shí),解不等式f(x)>x+1;
(2)若存在實(shí)數(shù)x,使得f(x)f(x+1),求實(shí)數(shù)a的取值范圍.
【答案】(1){x|x>3或x}.(2)(﹣2,+∞).
【解析】
(1)分與
兩種情況求解
即可.
(2)代入到不等式
中,再根據(jù)能成立問(wèn)題,分
的不同取值去絕對(duì)值,參變分離求函數(shù)最值即可.
解(1)當(dāng)a=1時(shí),由f(x)>x,得|2x﹣1|﹣1>x+1.
當(dāng)x時(shí),2x﹣1﹣1>x+1,解得x>3.
當(dāng)x時(shí),1﹣2x﹣1>x+1,解得x
.綜上可知,不等式f(x)>x+1的解集為 {x|x>3或x
}.
(2)因?yàn)?/span>,得
.即
.
令 ,
則存在實(shí)數(shù),使得
成立等價(jià)于
.
因?yàn)?/span> ,故當(dāng)
時(shí),
故.即實(shí)數(shù)
的取值范圍為
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若二次函數(shù)g(x)=ax2+bx+c(a≠0)滿(mǎn)足g(x+1)=2x+g(x),且g(0)=1.
(1)求g(x)的解析式;
(2)若在區(qū)間[-1,1]上,不等式g(x)-t>2x恒成立,求實(shí)數(shù)t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線(xiàn),過(guò)點(diǎn)
的動(dòng)直線(xiàn)
交拋物線(xiàn)于
,
兩點(diǎn)
(1)當(dāng)恰為
的中點(diǎn)時(shí),求直線(xiàn)
的方程;
(2)拋物線(xiàn)上是否存在一個(gè)定點(diǎn),使得以弦
為直徑的圓恒過(guò)點(diǎn)
?若存在,求出點(diǎn)
的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)(
且
).
(1)若的定義域?yàn)?/span>
,判斷
的單調(diào)性,并加以說(shuō)明;
(2)當(dāng)時(shí),是否存在
,
,使得
在區(qū)間
上的值域?yàn)?/span>
,若存在,求
的取值范圍;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù),
,
.
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)有兩個(gè)零點(diǎn)
,
(
).
(i)求的取值范圍;
(ii)求證:隨著
的增大而增大.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在四棱錐中,
,
,
,
,
分別為
的中點(diǎn),
.
(1)求證:平面平面
;
(2)設(shè),若平面
與平面
所成銳二面角
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列的各項(xiàng)均為正數(shù),前
項(xiàng)和
滿(mǎn)足
;數(shù)列
是等比數(shù)列,前
項(xiàng)和為
.
(1)求數(shù)列的通項(xiàng)公式;
(2)已知等比數(shù)列滿(mǎn)足
,
,
,求數(shù)列
前
項(xiàng)和為
;
(3)若,且等比數(shù)列
的公比
,若存在
,使得
,試求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若,恒有
成立,求實(shí)數(shù)
的取值范圍;
(2)若函數(shù)有兩個(gè)極值點(diǎn)
,求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,已知曲線(xiàn)
的參數(shù)方程為
,以坐標(biāo)原點(diǎn)
為極點(diǎn),
軸正半軸為極軸建立極坐標(biāo)系,曲線(xiàn)
的極坐標(biāo)方程為
.
(1)求曲線(xiàn)與曲線(xiàn)
兩交點(diǎn)所在直線(xiàn)的極坐標(biāo)方程;
(2)若直線(xiàn)的極坐標(biāo)方程為
,直線(xiàn)
與
軸的交點(diǎn)為
,與曲線(xiàn)
相交于
兩點(diǎn),求
的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com