精英家教網 > 高中數學 > 題目詳情

【題目】已知函數fx)=|2x1|a

1)當a1時,解不等式fx)>x+1;

2)若存在實數x,使得fxfx+1),求實數a的取值范圍.

【答案】(1){x|x3x}.(2)(﹣2,+∞).

【解析】

(1)兩種情況求解即可.

(2)代入到不等式,再根據能成立問題,分的不同取值去絕對值,參變分離求函數最值即可.

解(1)當a1時,由fx)>x,得|2x1|1x+1

x時,2x11x+1,解得x3

x時,12x1x+1,解得x.綜上可知,不等式fx)>x+1的解集為 {x|x3x}

2)因為,..

,

則存在實數,使得成立等價于.

因為 ,故當,

.即實數的取值范圍為

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】若二次函數g(x)ax2bxc(a≠0)滿足g(x1)2xg(x),且g(0)1.

1)求g(x)的解析式;

2)若在區(qū)間[1,1]上,不等式g(x)-t>2x恒成立,求實數t的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知拋物線,過點的動直線交拋物線于,兩點

(1)當恰為的中點時,求直線的方程;

(2)拋物線上是否存在一個定點,使得以弦為直徑的圓恒過點?若存在,求出點的坐標;若不存在,請說明理由

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

1)若的定義域為,判斷的單調性,并加以說明;

2)當時,是否存在,,使得在區(qū)間上的值域為,若存在,求的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數,,.

1)求函數的單調區(qū)間;

2)若函數有兩個零點,().

i)求的取值范圍;

ii)求證:隨著的增大而增大.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在四棱錐中,,,,分別為的中點,.

(1)求證:平面平面;

(2)設,若平面與平面所成銳二面角,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知數列的各項均為正數,前項和滿足;數列是等比數列,前項和為.

1)求數列的通項公式;

2)已知等比數列滿足,,求數列項和為

3)若,且等比數列的公比,若存在,使得,試求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

(1)若,恒有成立,求實數的取值范圍;

(2)若函數有兩個極值點,求證:.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系中,已知曲線的參數方程為,以坐標原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程為

(1)求曲線與曲線兩交點所在直線的極坐標方程;

(2)若直線的極坐標方程為,直線軸的交點為,與曲線相交于兩點,求的值.

查看答案和解析>>

同步練習冊答案