【題目】在平面直角坐標(biāo)系中,直線與圓相切,圓心的坐標(biāo)為.
(1)求圓的方程;
(2)設(shè)直線與圓沒有公共點(diǎn),求的取值范圍;
(3)設(shè)直線與圓交于、兩點(diǎn),且,求的值.
【答案】(1) (2) (3) 或.
【解析】
(1)利用直線和圓相切可求圓的半徑,從而得到圓的標(biāo)準(zhǔn)方程.
(2)利用圓心到直線的距離大于半徑可求的取值范圍.
(3)設(shè),由可得,聯(lián)立直線方程和圓的方程,消去后利用韋達(dá)定理化簡得到一個(gè)與有關(guān)的方程,解方程后可求的值.
解:(1)設(shè)圓的方程是(為圓的半徑),
∵為圓心的圓與直線相切,
∴所求圓的半徑,
∴所求的圓方程是.
(2)圓心到直線的距離
∵與圓沒有公共點(diǎn),
∴即,解得.
的取值范圍為.
(3)設(shè)
消去,得到方程,
由已知可得,判別式,化簡得,
①
由于,可得,
又,
得②
由①②得,故或,它們滿足,
故或.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知的頂點(diǎn)坐標(biāo)分別是,的外接圓為.
(1)求圓的方程;
(2)在圓上是否存在點(diǎn),使得?若存在,求點(diǎn)的個(gè)數(shù):若不存在,說明理由;
(3)在圓上是否存在點(diǎn),使得?若存在,求點(diǎn)的個(gè)數(shù):若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校舉行了一次考試,從學(xué)生中隨機(jī)選取了人的成績作為樣本進(jìn)行統(tǒng)計(jì).已知這些學(xué)生的成績?nèi)吭?/span>分至分之間,現(xiàn)將成績按如下方式分成組:第一組,第二組,.......,第六組,并據(jù)此繪制了如圖所示的頻率分布直方圖.
(1)估計(jì)這次月考數(shù)學(xué)成績的平均分和眾數(shù);
(2)從成績大于等于分的學(xué)生中隨機(jī)抽取人,求至少有名學(xué)生的成績在內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:的離心率為,且經(jīng)過點(diǎn)M(1,).
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)已知直線l不過點(diǎn)P(0,1),與橢圓C交于A、B兩點(diǎn),記直線PA、PB的斜率分別為k1、k2,且滿足k1+k2=1,求證:直線l過定點(diǎn),并求出該定點(diǎn)坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)求證: .
(2)某同學(xué)在一次研究性學(xué)習(xí)中發(fā)現(xiàn),以下五個(gè)式子的值都等于同一個(gè)常數(shù):
sin213°+cos217°-sin13°cos17°;
sin215°+cos215°-sin15°cos15°;
sin218°+cos212°-sin18°cos12°;
sin2(-18°)+cos248°-sin(-18°)cos48°;
sin2(-25°)+cos255°-sin(-25°)cos55°.
①試從上述五個(gè)式子中選擇一個(gè),求出這個(gè)常數(shù);
②根據(jù)①的計(jì)算結(jié)果,將該同學(xué)的發(fā)現(xiàn)推廣為三角恒等式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“中國剩余定理”又稱“孫子定理”.1852年英國來華傳教士偉烈亞力將《孫子算經(jīng)》中“物不知數(shù)”問題的解法傳至歐洲.1874年英國數(shù)學(xué)家馬西森指出此法符合1801年由高斯得到的關(guān)于同余式解法的一般性定理,因而西方稱之為“中國剩余定理”,“中國剩余定理”講的是一個(gè)關(guān)于整除的問題,現(xiàn)有這樣一個(gè)整除問題:將1到2030這2030個(gè)自然數(shù)中,能被3除余1且被4除余1的數(shù)按從小到大的順序排成一列,構(gòu)成數(shù)列,則此數(shù)列共有( )
A.168項(xiàng)B.169項(xiàng)C.170項(xiàng)D.171項(xiàng)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以軸的非負(fù)半軸為極軸,原點(diǎn)為極點(diǎn)建立極坐標(biāo)系,兩種坐標(biāo)系中取相同的長度單位,若直線和 分別與曲線相交于、兩點(diǎn)(,兩點(diǎn)異于坐標(biāo)原點(diǎn)).
(1)求曲線的普通方程與、兩點(diǎn)的極坐標(biāo);
(2)求直線的極坐標(biāo)方程及的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓的左焦點(diǎn)為,離心率為,為圓的圓心.
(1)求橢圓的方程;
(2)已知過橢圓右焦點(diǎn)的直線交橢圓于兩點(diǎn),過且與垂直的直線與圓交于兩點(diǎn),求四邊形面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知方程恰有四個(gè)不同的實(shí)數(shù)根,當(dāng)函數(shù)時(shí),實(shí)數(shù)的取值范圍是
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com