【題目】設(shè)橢圓的左焦點為,離心率為,為圓的圓心.

(1)求橢圓的方程;

(2)已知過橢圓右焦點的直線交橢圓于兩點,過且與垂直的直線與圓交于兩點,求四邊形面積的取值范圍.

【答案】(1);(2)

【解析】試題分析:(Ⅰ)由題意求得a,b的值即可確定橢圓方程;

(Ⅱ)分類討論,設(shè)直線l代入橢圓方程,運用韋達定理和弦長公式,可得|AB|,根據(jù)點到直線的距離公式可求出|CD|,再由四邊形的面積公式,化簡整理,運用不等式的性質(zhì),即可得到所求范圍

試題解析:

1)由題意知,則,

的標(biāo)準(zhǔn)方程為,從而橢圓的左焦點為,即

所以,又,得

所以橢圓的方程為:.

(2)可知橢圓右焦點

(ⅰ)當(dāng)lx軸垂直時,此時不存在,直線l:,直線

可得:,,四邊形面積為12.

(ⅱ)當(dāng)lx軸平行時,此時,直線,直線,

可得:,,四邊形面積為.

(iii)當(dāng)lx軸不垂直時,設(shè)l的方程為 ,并設(shè),.

.

顯然,且, .

所以.

且與l垂直的直線,則圓心到的距離為

所以.

故四邊形面積:.

可得當(dāng)lx軸不垂直時,四邊形面積的取值范圍為(12,).

綜上,四邊形面積的取值范圍為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地4個蔬菜大棚頂部,陽光照在一棵棵茁壯生長的蔬菜上,這些采用水培、無土栽培方式種植的各類蔬菜,成為該地區(qū)居民爭相購買的對象,過去50周的資料顯示,該地周光照量小時都在30以上,其中不足50的周數(shù)大約5周,不低于50且不超過70的周數(shù)大約有35周,超過70的大約有10周,根據(jù)統(tǒng)計某種改良黃瓜每個蔬菜大棚增加量百斤與每個蔬菜大棚使用農(nóng)夫1號液體肥料千克之間對應(yīng)數(shù)據(jù)為如圖所示的折線圖.

(1)依據(jù)數(shù)據(jù)的折線圖,用最小二乘法求出關(guān)于的線性回歸方程;并根據(jù)所求線性回歸方程,估計如果每個蔬菜大棚使用農(nóng)夫1號肥料10千克,則這種改良黃瓜每個蔬菜大鵬增加量是多少斤?

(2)因蔬菜大棚對光照要求較大,某光照控制儀商家為應(yīng)對惡劣天氣對光照的影響,為該基地提供了部分光照控制儀,該商家希望安裝的光照控制儀盡可能運行,但每周光照控制儀最多可運行臺數(shù)受周光照量限制,并有如下關(guān)系:

周光照量單位:小時

30<X<50

光照控制儀最多可運行臺數(shù)

3

2

1

若某臺光照控制儀運行,則該臺光照儀周利潤為4000元;若某臺光照儀未運行,則該臺光照儀周虧損500元,欲使商家周總利潤的均值達到最大,應(yīng)安裝光照控制儀多少臺?

附:回歸方程系數(shù)公式: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中,,的平分線,且,則的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)為偶函數(shù),且.

1)求的值,并確定的解析式;

2)若,是否存在實數(shù),使得在區(qū)間上為減函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為打贏打好脫貧攻堅戰(zhàn),實現(xiàn)建檔立卡貧困人員穩(wěn)定增收,某地區(qū)把特色養(yǎng)殖確定為脫貧特色主導(dǎo)產(chǎn)業(yè),助力鄉(xiāng)村振興.現(xiàn)計劃建造一個室內(nèi)面積為平方米的矩形溫室大棚,并在溫室大棚內(nèi)建兩個大小、形狀完全相同的矩形養(yǎng)殖池,其中沿溫室大棚前、后、左、右內(nèi)墻各保留米寬的通道,兩養(yǎng)殖池之間保留2米寬的通道.設(shè)溫室的一邊長度為米,如圖所示.

1)將兩個養(yǎng)殖池的總面積表示為的函數(shù),并寫出定義域;

2)當(dāng)溫室的邊長取何值時,總面積最大?最大值是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為打贏打好脫貧攻堅戰(zhàn),實現(xiàn)建檔立卡貧困人員穩(wěn)定增收,某地區(qū)把特色養(yǎng)殖確定為脫貧特色主導(dǎo)產(chǎn)業(yè),助力鄉(xiāng)村振興.現(xiàn)計劃建造一個室內(nèi)面積為平方米的矩形溫室大棚,并在溫室大棚內(nèi)建兩個大小、形狀完全相同的矩形養(yǎng)殖池,其中沿溫室大棚前、后、左、右內(nèi)墻各保留米寬的通道,兩養(yǎng)殖池之間保留2米寬的通道.設(shè)溫室的一邊長度為米,如圖所示.

1)將兩個養(yǎng)殖池的總面積表示為的函數(shù),并寫出定義域;

2)當(dāng)溫室的邊長取何值時,總面積最大?最大值是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四面體ABCD中,△ABC是等邊三角形,平面ABC⊥平面ABD,點M為棱AB的中點,AB=2,AD=,BAD=90°

求證:ADBC;

求異面直線BCMD所成角的余弦值;

(Ⅲ)求直線CD與平面ABD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 )的左右焦點分別為 ,若橢圓上一點滿足,且橢圓過點,過點的直線與橢圓交于兩點 .

(1)求橢圓的方程;

(2)過點軸的垂線,交橢圓,求證: , 三點共線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了了解甲、乙兩個工廠生產(chǎn)的輪胎的寬度是否達標(biāo),分別從兩廠隨機各選取了個輪胎,將每個輪胎的寬度(單位: )記錄下來并繪制出如下的折線圖:

(1)分別計算甲、乙兩廠提供的個輪胎寬度的平均值;

(2)輪胎的寬度在內(nèi),則稱這個輪胎是標(biāo)準(zhǔn)輪胎.

(i)若從甲乙提供的個輪胎中隨機選取個,求所選的輪胎是標(biāo)準(zhǔn)輪胎的概率;

(ii)試比較甲、乙兩廠分別提供的個輪胎中所有標(biāo)準(zhǔn)輪胎寬度的方差大小,根據(jù)兩廠的標(biāo)準(zhǔn)輪胎寬度的平均水平及其波動情況,判斷這兩個工廠哪個廠的輪胎相對更好?

查看答案和解析>>

同步練習(xí)冊答案