【題目】如圖所示,某街道居委會擬在EF地段的居民樓正南方向的空白地段AE上建一個活動中心,其中AE長為30米.活動中心東西走向,與居民樓平行.從東向西看活動中心的截面圖的下部分是長方形ABCD,上部分是以DC為直徑的半圓.為了保證居民樓住戶的采光要求,活動中心在與半圓相切的太陽光線照射下落在居民樓上的影長GE不超過2.5米,其中該太陽光線與水平線的夾角θ滿足tan θ=.
(1)若設計AB=18米,AD=6米,問能否保證上述采光要求?
(2)在保證上述采光要求的前提下,如何設計AB與AD的長度,可使得活動中心的截面面積最大? (注:計算中π取3)
【答案】(1)能 (2)當AB=20米且AD=5米時,可使得活動中心的截面面積最大.
【解析】
(1)以點A為坐標原點,AB所在直線為x軸,建立平面直角坐標系.設太陽光線所在直線方程為y=x+b,利用直線與圓相切,求出直線方程,令x=30,得EG=1.5米<2.5米,即
可得出結論;(2)欲使活動中心內部空間盡可能大,則影長EG恰為2.5米,即可求出截面面積最大.
解:如圖,以A為坐標原點,AB所在直線為x軸,建立平面直角坐標系.
(1)因為AB=18米,AD=6米,
所以半圓的圓心為H(9,6),半徑r=9.
設太陽光線所在直線方程為y=-x+b,
即3x+4y-4b=0,則由=9,
解得b=24或b= (舍).
故太陽光線所在直線方程為y=-x+24,
令x=30,得EG=1.5<2.5.
所以此時能保證上述采光要求.
(2)設AD=h米,AB=2r米,
則半圓的圓心為H(r,h),半徑為r.
方法一 設太陽光線所在直線方程為y=-x+b,
即3x+4y-4b=0,
由=r,解得b=h+2r或b=h- (舍).
故太陽光線所在直線方程為y=-x+h+2r,
令x=30,得EG=2r+h-,
由EG≤,得h≤25-2r.
所以S=2rh+πr2=2rh+×r2≤2r(25-2r)+×r2
=-r2+50r=-(r-10)2+250≤250.
當且僅當r=10時取等號.
所以當AB=20米且AD=5米時,
可使得活動中心的截面面積最大.
方法二 欲使活動中心內部空間盡可能大,
則影長EG恰為2.5米,則此時點G為(30,2.5),
設過點G的上述太陽光線為l1,
則l1所在直線方程為y-=-(x-30),
即3x+4y-100=0.
由直線l1與半圓H相切,得r=.
而點H(r,h)在直線l1的下方,則3r+4h-100<0,
即r=-,從而h=25-2r.
又S=2rh+πr2=2r(25-2r)+×r2=-r2+50r=-(r-10)2+250≤250.當且僅當r=10時取等號.
所以當AB=20米且AD=5米時,
可使得活動中心的截面面積最大.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)y=x2的圖象在點(x0 , x02)處的切線為l,若l也與函數(shù)y=lnx,x∈(0,1)的圖象相切,則x0必滿足( )
A.0<x0<
B. <x0<1
C. <x0<
D. <x0
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知在直角坐標系xOy中,圓C的參數(shù)方程為 (θ為參數(shù)),以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,直線l的極坐標方程為 .
(1)求圓C的普通方程和直線l的直角坐標方程;
(2)設M是直線l上任意一點,過M做圓C切線,切點為A、B,求四邊形AMBC面積的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)f′(x)是奇函數(shù)f(x)(x∈R)的導函數(shù),f(﹣1)=0,當x>0時,xf′(x)﹣f(x)<0,則使得f(x)>0成立的x的取值范圍是( )
A.(﹣∞,﹣1)∪(0,1)
B.(﹣1,0)∪(1,+∞)
C.(﹣∞,﹣1)∪(﹣1,0)
D.(0,1)∪(1,+∞)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C: =1(a>b>0)過點A ,離心率為 ,點F1 , F2分別為其左右焦點.
(1)求橢圓C的標準方程;
(2)是否存在圓心在原點的圓,使得該圓的任意一條切線與橢圓C恒有兩個交點P,Q,且 ?若存在,求出該圓的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,F(xiàn)是橢圓P: (a>b>0)的右焦點,已知A(0,﹣2)與橢圓左頂點關于直線y=x對稱,且直線AF的斜率為 ,
(1)求橢圓P的方程;
(2)過點Q(﹣1,0)的直線l交橢圓P于M、N兩點,交直線x=﹣4于點E, = , = ,證明:λ+μ為定值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com